decorininterior.ru

Элементы процесса резания. Технология конструкционных материалов

На обработку точением на станках токарной группы приходится большинство технологических операций при обработке тел вращения. Для получения качественного результата при минимальных затратах рассчитываются и назначаются режимы резания.

Оптимальные режимы резания влияют на целостность и продолжительность работы режущего инструмента, а также на кинематические, динамические характеристики станков.

Характеристика режимов резания

Необходимые технологические параметры, используемые при токарной обработке металлов, берут свое начало в теории резания. Основные ее положения применяются конструкторами при проектировании режущих инструментов, металлорежущих станков и приспособлений.

Требуемые режимы обработки точением можно получить двумя способами. В первом случае режимы назначаются, для чего используются табличные данные. Данные регистрировались на протяжении длительного времени на разных этапах обработки различным инструментом.

Во втором случае режимы резания рассчитываются по эмпирическим формулам. Этот способ называется аналитическим методом. Считается, что аналитический метод дает более точные результаты в отличие от назначенных параметров.

На сегодняшний день разработчики программного обеспечения предлагают множество программ для расчета режимов обработки. Достаточно ввести в поля известные данные и программа самостоятельно выполнит расчеты и выдаст результат. Это значительно упрощает работу и снижает ее продолжительность.

Для изготовления детали с заданными размерами и необходимой чистотой поверхности необходим чертеж. На его основе разрабатывается технологический процесс обработки с подбором необходимого оборудования и инструмента.

Инструмент для точения: классификация

От качества и надежности токарных резцов в значительной степени зависит точность получаемых размеров и производительность обработки. Они должны обеспечивать:

Классифицировать токарные резцы можно по способу обработки:

  • проходные;
  • подрезные;
  • отрезные;
  • прорезные;
  • галтельные;
  • резьбовые;
  • фасонные;
  • расточные.

По материалу режущей части выделяют:

  • инструментальные;
  • быстрорежущие;
  • твердосплавные:
    • однокарбидные (вольфрамовые);
    • двухкарбидные (титановольфрамовые);
    • трехкарбидные (титанотанталовольфрамовые);
  • минералокерамические;
  • алмазы.

По конструктивному исполнению токарные резцы бывают:

  • цельные;
  • сборные;
  • комбинированные.

Выбор типа токарного резца зависит от типа обрабатываемой поверхности (наружная, внутренняя), твердости материала заготовки, типа обработки (черновая, получистовая, чистовая), геометрических параметров и материала режущей части, державки.

Схема расчета режимов

Расчет режимов резания при точении наружной цилиндрической поверхности по обыкновению ведут с определения удаляемого слоя. Глубина резания – это срезаемый слой металла за один рабочий проход. Определяется по формуле:

t = (D 1 - D 2)/2,

где D 1 – исходный размер, D 2 – получаемый размер.

Расчет глубины резания начинается после определения типа обработки. Черновым точением удаляется 60% припуска, свыше 2 мм. Получистовым точением удаляется 30% 1- 1,5 мм. А оставшиеся 10% 0,4- 0,8 мм остаются на чистовую обработку.

Подача – это расстояние, которое проходит инструмент за один оборот обрабатываемой заготовки. Для увеличения производительности подачи подбираются максимальными исходя из:

  • твердости пластины;
  • мощности привода;
  • жесткости системы СПИД.

На машиностроительных предприятиях подачи назначаются из таблиц. Так, для чернового точения твердых материалов подача не превышает 1,5 мм/об, а для мягких материалов не более 2,4 мм/об. Для получистового точения подача не превышает 1,0 мм/об.

От чистового точения во многом зависит шероховатость поверхности, поэтому максимальным значением будет S max = 0.25 мм/об. При обработке изделий с ударными нагрузками назначенное значение подачи умножается на понижающий коэффициент 0,85.

Скорость резания при токарной обработке вычисляется по формуле:

V=Cv/(T¹ t² s³)·Kv

где Сv - коэффициент, применяемый к обрабатываемому материалу заготовки и инструменту, 1 (x), 2 (y), 3 (m) – показатели степеней, Т - стойкость инструмента, Kv - поправочный коэффициент резания.

Kv зависит от:

  • качества обрабатываемого материала;
  • материала режущей пластины инструмента;
  • поверхностного слоя заготовки.

После получения расчетного значения скорости резания определяется число оборотов шпинделя станка по формуле: n = (1000· V)/(π· D)

Полученное значение количества оборотов необходимо подобрать из стандартного ряда для станка, на котором производится обработка. Оно не должно отличаться от станочной сетки больше, чем на 5%. После чего производится уточнение скорости резания.

N э = (Pz · V)/(1020 · 60)

где Pz – тангенциальная сила резания, максимальная нагрузка при точении.

Pz = 10·Cp·t¹·s²·V³·Kp

После определения необходимой мощности рассчитывается потребная мощность станка:

где µ - КПД станка, закладывается заводом-изготовителем.

Итоговое значение мощности должно быть меньше мощности электродвигателя главного движения. Это означает, что принятые и рассчитанные значения верны. В противном случае подачу и глубину резания необходимо уменьшить или подбирать станок необходимой мощности.

К основным элементам режима резания относят глубину, подачу и скорость резания. Рассмотрим схему резания при точении на примере обтачивания цилиндрической поверхности на токарном станке.

Глубина резания

t – глубина резания, величина снимаемого слоя металла, измеряемая перпендикулярно к обработанной поверхности и снимаемая за один проход режущего инструмента:

где D заг – диаметр обрабатываемой поверхности, мм;

d – диаметр обработанной поверхности, мм;

Глубина резания t принимается обычно равной припуску. При чистовом проходе t должна быть не более 1…2 мм.

Рисунок 4.1 – Элементы резания и геометрия срезаемого слоя

Подача

Подача S – величина (путь) перемещения режущей кромки за один оборот обрабатываемой заготовки, либо за один ход заготовки или инструмента в направлении движения подачи, мм/об, мм/дв.ход.

Подачу назначают из условия обеспечения требуемой шероховатости обрабатываемой поверхности. Обычно работают на S пр = (0,20…0,25) мм/об. Высокая чистота получается при работе на S пр = 0,03…0,05 мм/об.

Эти параметры элементы режима резания t и S непосредственно влияют на размеры снимаемой стружки, так:

а – толщина срезаемого слоя, расстояние между двумя последовательными положениями главной режущей кромки за один оборот заготовки определяется а = S · sinφ;

в – ширина срезаемого слоя, расстояние между обрабатываемой и обработанной поверхностями, измеренное по поверхности резания: в=t/sinφ .

Заштрихованная площадь называется площадью поперечного сечения срезаемого слоя F:

F = t · S = a · b, мм 2 .

Скорость резания

V – скорость резания, путь перемещения обрабатываемой поверхности заготовки относительно режущей кромки резца в единицу времени, м/мин.

М/мин, м/с,

n – число оборотов заготовки/мин.

Если главное движение возвратно–поступательное, (например строгание), а скорости рабочего и холостого ходов различны, то скорость резания в м/мин находят по следующей зависимости

V = Lm(К=1)/1000,

где L – расчетная длина хода инструмента;
m – число двойных ходов инструмента в мин;
К – коэффициент показывающий отношение скоростей рабочего и холостого ходов.

Для повышения производительности процесса обработки V резания должна быть наибольшей. Однако, скорость резания ограничивается стойкостью режущей кромки инструмента, т.е.

где Т – стойкость инструмента, т.е. способность сохранять в рабочем состоянии режущие кромки (до достижения критического критерия затупления h зкр);

С v – коэффициент учитывающий конкретные условия обработки: физико-механические свойства обрабатываемого материала, качество поверхности заготовки, углы резца, условия охлаждения и т.д.;

х y и y v – показатели степени при глубине резания t и подаче S, точно также как и С v указаны в нормативных справочниках по резанию. Для определения оптимальной скорости резания нужен экономический анализ, необходимо выяснить, что выгоднее – повышение скорости резания или повышение стойкости инструмента. Например, расчетами или опытами выявлено, что при скоростях резания

V, м/с 1,2 1,5 1,7 2,0
Т, сек 425 166 100 33

Анализируя эти результаты можно отметить, что увеличение скорости резания на 25% приводит к снижению стойкости резца почти в три раза. Поэтому нужно учитывать, что по времени выгоднее – увеличение скорости или сохранение стойкости? В справочниках имеются рекомендуемые скорости резания V для данных конкретных условий обработки. При назначении V учитывают ее влияние на шероховатость поверхности, которая оказывает существенное влияние на износостойкость рабочих поверхностей детали, ее усталостную и коррозионную стойкость, а также на коэффициент полезного действия машин.

Шероховатость – один из показателей качества поверхности оценивается высотой, формой, направлением неровностей, включающая выступы и впадины на поверхности деталей, характеризующиеся малыми шагами т.е.

Она характеризуется тремя высотными параметрами R a , R r , R max двумя шаговыми S m , S и относительной опорной длиной t р.

На шероховатость влияют режим резания, геометрия инструмента, вибрации, физико-механические свойства материала заготовки.

По современным представлениям сила трения F т включает силу молекулярного взаимодействия контактирующих поверхностей и силу сопротивления их перемещению вследствие зацепления неровностей.

При благоприятном профиле износостойкость детали выше за счет меньшей величины контактных напряжений. Необходимо иметь ввиду, что усталостные разрушения вызываются знакопеременными нагрузками и трещины при этом развиваются с поверхности, причем в местах наиболее напряженных, т.е. во впадинах, где высокая степень пластического деформирования.

Следовательно скорость резания назначается таким образом, чтобы через определенное время (период стойкости Т) резец износился до значения критерия h 3 . Так Т = 30…60 мин для резцов из быстрорежущей стали и Т max = 90 мин – для резцов с напаянными твердыми сплавами.

Пример

Для определенных условий обработки на токарно-винторезном станке модели IК62 определим значения теоретической скорости резания V т:

Значения С v = 5640 и 1500, m = 0,8, Х v = 0,55 и У v = 0,55 приняты из справочных нормативных материалов по резанию.

Необходимо отметить, что скорость резания не оказывает существенного влияния на шероховатость, как значение подачи.

По паспортным данным станка IК62 определяем фактическую скорость резания V д.

Расчетная частота вращения шпинделя , пр (для V т = 120 м/мин):

На станке V т – теоретическая скорость резания для данных условий обработки, м/мин; D з – диаметр заготовки, мм.

Машинное время обработки определяется по формуле

где l – длина заготовки, мм;

l 2 – длина перебега, по нормативным таблицам: для глубины резания

мм, l2 = 2 мм,

где d – диаметр, обработанной поверхности;

l 1 – длина врезания

где φ – главный угол в плане проходного резца, примем равным 60°.

При токарной обработке цилиндрической поверхности основное (машинное) время и элементы режима резания связаны зависимостью

где L i = l + l 1 + l 2 – путь режущего инструмента относительно заготовки в направлении подачи (l – длина обрабатываемой поверхности, мм; l 1 = t·ctgφ – величина врезания резца, мм; l 2 = 1–3 мм выход резца (перебег)), i =H/t число рабочих ходов резца, необходимое для снятия материала, оставленного на обработку (Н – толщина удаляемого слоя металла, мм).

В целом штучное время состоит

Т шт = Т о + Т в + Т об + Т п,

где Т в – вспомогательное время необходимое для выполнения действий, связанных с подготовкой к процессу резания (подвод и отвод инструмента, установка и снятие заготовки и т.д.);

Т об – время обслуживания рабочего места, оборудования и инструмента в рабочем состоянии;

Т п – время на отдых и естественные потребности, отнесенное к одной детали.

Для того чтобы обрабатывать заготовку резанием и получать в результате этого обработанные поверхности той или иной детали, заготовка и применяемый режущий инструмент должны совершать определенные движения. Эти движения разделяются на основные (служащие для осуществления процесса резания) и вспомогательные (служащие для подготовки к процессу резания и для завершения операции). Основных движений два:

  • движение резания (или главное движение);
  • движение подачи.

При обработке на токарном станке движение резания - вращательное - совершает заготовка, тем или иным способом скрепленная со шпинделем станка, а движение подачи - поступательное - получает режущий инструмент (резец), жестко закрепленный в резцедержателе. Движение позволяет осуществлять процесс резания (образования стружки) , движение же подачи дает возможность вести этот процесс (обработку) по всей длине заготовки (рис. ч.16).

Глубина резания (t) -величина срезаемого слоя за один проход, измеренная в направлении, перпендикулярном обработанной поверхности. Глубина резания всегда перпендикулярна направлению движения подачи (см. также рис. 11 -14). При наружном продольном точении (рис. 16) она представляет собой полуразность между диаметром заготовки и диаметром обработанной поверхности, полученной после одного прохода:

Скорость резания υ - величина перемещения точки режущей кромки относительно поверхности в единицу времени в процессе осуществления движения резания*.

При токарной обработке, когда обрабатываемая заготовка вращается с частотой n об/мин, скорости резания в точках МК режущей кромки будет величиной переменной. Максимальная скорость:

где D - наибольший диаметр поверхности в мм.

* Скорость резания является функцией частоты вращения заготовки и скорости перемещения резца (подачи).

Если скорость будет известна, то легко определить частоту вращения:

При продольном точении скорость резания имеет постоянную величину на протяжении всего времени резания (если диаметр заготовки вдоль всей ее длины одинаков, а частота вращения неизменна). При подрезке торца, когда резец перемещается от периферии заготовки к центру, скорость резания при постоянной частоте вращения переменна. Она имеет наибольшее значение у периферии и равна нулю в центре (рис. 17). Переменной вдоль обработанной поверхности скорость резания будет и при отрезке (см. рис. 14). Однако в этих случаях учитывают максимальную скорость резания.

Подача s (точнее, скорость подачи) - величина перемещения режущей кромки относительно обработанной поверхности в единицу времени в направлении движения подачи. При токарной обработке может быть продольная подача , когда резец перемещается в направлении, параллельном оси заготовки (см. рис. 16); поперечная подача , когда резец перемещается в направлении, перпендикулярном оси заготовки (см. рис. 17), и наклонная подача - под углом к оси заготовки (например, при точении конической поверхности).

Различают подачу за один оборот заготовки, т. е. величину относительного перемещения резца за время одного оборота заготовки (из положения I резец переместился в положение II, рис. 16), и минутную подачу , т. е. величину относительного перемещения резца за 1 мин. Минутная подача обозначается S м (мм/мин), а подача за одни оборот - s (мм/об). Между ними существует следующая зависимость.

Обработка металлических и иных поверхностей с помощью стала неотъемлемой частью повседневной жизни в индустрии. Многие технологии видоизменились, некоторые упростились, но суть осталась прежняя – правильно подобранные режимы резания при токарной обработке обеспечивают необходимый результат. Процесс включает в себя несколько составляющих:

  • мощность;
  • частота вращения;
  • скорость;
  • глубина обработки.

Ключевые моменты изготовления

Существует ряд хитростей, которых необходимо придерживаться во время работы на токарном станке:

  • фиксация заготовки в шпиндель;
  • точение с помощью резца необходимой формы и размера. Материалом для металлорежущих основ служит сталь или иные твердосплавные кромки;
  • снятие ненужных шаров происходит за счет разных оборотов вращения резцов суппорта и непосредственно самой заготовки. Иными словами, создается дисбаланс скоростей между режущими поверхностями. Второстепенную роль играет твердость поверхности;
  • применение одной из нескольких технологий: продольная, поперечная, совмещение обеих, применение одной из них.

Виды токарных станков

Под каждую конкретную деталь используется тот или иной агрегат:

  • винторезно-токарные: группа станков, пользующихся наибольшей востребованностью при изготовлении цилиндрических деталей из черных и цветных металлов;
  • карусельно-токарные: виды агрегатов, применяемых для вытачивания деталей. Особенно больших диаметров из металлических заготовок;
  • лоботокарный станок: позволяет вытачивать детали цилиндрической и конической форм при нестандартных габаритах заготовки;
  • : изготовление детали, заготовка которой представлена в виде калиброванного прудка;
  • – числовое программное управление: новый вид оборудования, позволяющий с максимальной точностью обрабатывать различные материалы. Достичь подобного специалисты могут с помощью компьютерной регулировки технических параметров. Точение происходит с точностью до микронных долей миллиметра, что невозможно увидеть или проверить невооруженным глазом.

Подбор режимов резания

Режимы работы

Заготовка из каждого конкретного материала требует соответствия режима резки при токарной обработке. От правильности подборки зависит качество конечного изделия. Каждый профильный специалист в своей работе руководствуется следующими показателями:

  • Скорость, с которой вращается шпиндель. Главный акцент делается на вид материала: черновой или чистовой. Скорость первого несколько меньше, нежели второго. Чем выше обороты шпинделя, тем ниже подача резца. В противном случае плавление металла неизбежно. В технической терминологии это называется «возгорание» обработанной поверхности.
  • Подача – выбирается в пропорциональном соотношении со скоростью шпинделя.

Резцы подбираются исходя из вида заготовки. Выточка с помощью токарной группы самый распространенный вариант, несмотря на наличие иных видов более совершенного оборудования.

Это обосновывается невысокой стоимостью, высокой надежностью, длительным сроком эксплуатации.

Как вычисляется скорость

В инженерной среде расчет режимов резания исчисляют с помощью следующей формулы:

V = π * D * n / 1000,

V – скорость резки, исчисляемая в метрах за минуту;

D – диаметру детали или заготовки. Показатели следует преобразовать в миллиметры;

n – величина оборотов за минуту времени обрабатываемого материала;

π – константе 3,141526 (табличное число).

Иными словами, скорость резания это тот отрезок пути, который проходит заготовка за минуту времени.

Например, при диаметре 30 мм скорость резки будет равна 94 метра за минуту.

При возникновении необходимости вычислить величину оборотов, при условии определенной скорости, применяется следующая формула:

N = V *1000/ π * D

Эти величины и их расшифровка уже известны по предыдущим операциям.

Дополнительные материалы

Во время изготовления, большинство специалистов руководствуются в качестве дополнительного пособия, приведенными ниже показателями. Таблица коэффициента прочности:

Коэффициент прочности материала:

Коэффициент стойкости резца:

Третий способ вычисления скорости

  • V фактическое = L * K*60/T резания;
  • где L – длина полотна, преображенная в метры;
  • K – количество оборотов за время резания, исчисляемое в секундах.

Например, длина равна 4,4 метра, 10 оборотов, время 36 секунд, итого.

Скорость равна 74 оборота в минуту.

Видео: Понятие о процессе резания

Методические указания

Для выполнения контрольной работы по дисциплине

«Процессы формообразования и инструмент»

Пермь – 2005

Цель работы: практически овладеть методикой назначения режима резания и расчета машинного времени при токарной обработке.

    Шифр задания , (приложение I).

I, II, III и т. д. – вид операции механической обработки: предварительная продольная обточка стальных или чугунных заготовок, чистовая обточка стальных или чугунных деталей и т. д.

1, 2, 3 и т. д. – номера вариантов задания.

Например, шифр задания I-10 означает, что следует назначить элементы режима резания и рассчитать машинное время при предварительной продольной обточке стальной заготовки при следующих условиях: обрабатываемый материал – сталь хромокремнистая прочностью 980 МПа (прокат горячекатаный), диаметр заготовки D 1 = 148 мм, диаметр обработанной детали D 2 = 140 мм, длина обработанной поверхности L = 400 мм, на поверхности заготовки корка, обработка производится без охлаждения. Резец правый, прямой, проходной, материал режущей части твердый сплав Т5К10, α = 8º, γ = -10º, φ = 30º, φ 1 = 15º, λ = 0º, r В = 1 мм.

Период стойкости Т = 30 мин., допустимый износ по главной задней поверхности h 3 = 1,0 мм.

  1. Оборудование.

Все варианты задания выполняются на токарно-винторезном станке модели 16К20.

Технические характеристики станка:

Высота центров 215 мм

Расстояние между центрами 2000 мм

Мощность электродвигателя

главного движения N ст = 10 кВт

КПД станка η = 0,75

Частоты вращения шпинделя:

12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100; 125; 160; 200; 250;315; 400; 500; 630; 800; 1000; 1250; 1600 об/мин.

Продольные подачи: 0,05; 0,06; 0,075; 0,09; 0,10; 0,125; 0,15; 0,175; 0,20; 0,25; 0,30; 0,35; 0,40; 0,50; 0,60; 0,70; 0,80; 1,0; 1,2; 1,4; 1,6; 2,0; 2,4; 2,8 мм/об.

Поперечные подачи: 0,025; 0,03; 0,0375; 0,045; 0,05; 0,0625; 0,075; 0,0875; 0,10; 0,125; 0,15; 0,175; 0,2; 0,25; 0,3; 0,35; 0,40; 0,50; 0,60; 0,70; 0,80; 1,10; 1,20; 1,40 мм/об.

  1. Элементы режима резания при токарной обработке.

К элементам режима резания относятся (рис. 1):

    Скорость резания:

где - диаметр обрабатываемой поверхности детали, мм;

- частота вращения шпинделя станка, об/мин.

При заданной скорости резания частота вращения шпинделя станка определяется по формуле:

(2)

    Подача назначается в мм на один оборот детали S , мм/об.

    Минутная подача: S м = S·n , мм/мин. (3)

    Глубина резания

(4)

Совокупность этих элементов (v, s, t ) называется режимом резания.

  1. Назначение элементов режима резания.

Наивыгоднейшим называется режим резания, обеспечивающий наивысшую производительность процесса при наименьшей его себестоимости. Наивысшая производительность процесса достигается при наибольших значениях глубины резания, подачи и скорости резания. Наименьшая себестоимость достигается при обеспечении экономически обоснованного периода стойкости резца. Эта величина указана в задании.

Задание предусматривает расчет наивыгоднейшего режима резания при токарной обработке. Для других видов механической обработки (сверления, зенкерования, фрезерования и т. д.) используются аналогичные методики. При этом существует единая последовательность, суть которой заключается в следующем: в первую очередь назначаются элементы режима резания наименьшим образом влияющие на период стойкости инструмента – глубина резания и подача.

По этим двум элементам и заданной экономически обоснованной величине периода стойкости рассчитывается скорость резания. По назначенному таким образом режиму резания производятся различные проверочные расчеты. В данной работе предусмотрена проверка по мощности главного привода станка.

Режим резания назначается по формулам и таблицам, приведенным в тексте данных методических указаний и в приложении II.

Ниже приведена последовательность назначения режима резания при токарной обработке.

Рис. 1

Загрузка...