decorininterior.ru

Биологические исследования в космосе. Как космическая медицина спасает людей на земле

Наука биология включает в себя массу разных разделов, больших и малых дочерних наук. И каждая из них имеет важное значение не только в жизни человека, но и для всей планеты в целом.

Второе столетие подряд люди пытаются изучать не только земное разнообразие жизни во всех ее проявлениях, но и узнать, есть ли жизнь за пределами планеты, в космических просторах. Этим вопросам занимается особая наука - космическая биология. О ней и пойдет речь в нашем обзоре.

Раздел

Данная наука относительно молодая, но очень интенсивно развивающаяся. Основными аспектами изучения являются:

  1. Факторы космического пространства и их влияние на организмы живых существ, жизнедеятельность всех живых систем в условиях космоса или летательных аппаратов.
  2. Развитие жизни на нашей планете при участии космоса, эволюция живых систем и вероятность существования биомассы вне пределов нашей планеты.
  3. Возможности построения замкнутых систем и создания в них настоящих жизненных условий для комфортного развития и роста организмов в космическом пространстве.

Космическая медицина и биология являются тесно связанными друг с другом науками, совместно изучающими вопросы физиологического состояния живых существ в космосе, их распространенности в межпланетных просторах и эволюции.

Благодаря исследованиям этих наук стало возможным подбирать оптимальные условия для нахождения людей в космосе, причем не нанося при этом никакого вреда здоровью. Собран огромный материал по наличию жизни в космосе, возможностям растений и животных (одноклеточных, многоклеточных) жить и развиваться в невесомости.

История развития науки

Корни космической биологии уходят еще в древнее время, когда философы и мыслители - естествоиспытатели Аристотель, Гераклит, Платон и другие - наблюдали за звездным небом, пытаясь выявить взаимосвязь Луны и Солнца с Землей, понять причины их влияния на сельскохозяйственные угодья и животных.

Позже, в средние века, начались попытки определения формы Земли и объяснения ее вращения. Долгое время на слуху была теория, созданная Птолемеем. Она говорила о том, что Земля - это а все остальные планеты и небесные тела движутся вокруг нее

Однако нашелся другой ученый, поляк Николай Коперник, который доказал ошибочность этих утверждений и предложил свою, гелиоцентрическую систему строения мира: в центре - Солнце, а все планеты движутся вокруг. При этом Солнце - тоже звезда. Его взгляды поддерживали последователи Джордано Бруно, Ньютон, Кеплер, Галилей.

Однако именно космическая биология как наука появилась много позже. Только в XX веке русский ученый Константин Эдуардович Циолковский разработал систему, позволяющую людям проникать в космические глубины и потихоньку их изучать. Его по праву считают отцом этой науки. Также большую роль в развитии космобиологии сыграли открытия в физике и астрофизике, квантовой химии и механике Эйнштейна, Бора, Планка, Ландау, Ферми, Капицы, Боголюбова и других.

Новые научные исследования, позволившие людям совершить-таки давно планируемые вылеты в космос, позволили выделить конкретные медицинские и биологические обоснования безопасности и влияния внепланетных условий, которые сформулировал Циолковский. В чем была их суть?

  1. Ученым было дано теоретическое обоснование влияния невесомости на организмы млекопитающих.
  2. Он смоделировал несколько вариантов создания условий космоса в лаборатории.
  3. Предложил варианты получения космонавтами пищи и воды при помощи растений и круговорота веществ.

Таким образом, именно Циолковским были заложены все основные постулаты космонавтики, которые не потеряли своей актуальности и сегодня.

Невесомость

Современные биологические исследования в области изучения влияния динамических факторов на организм человека в условиях космоса позволяют по максимуму избавлять космонавтов от негативного влияния этих самых факторов.

Выделяют три главные динамические характеристики:

  • вибрация;
  • ускорение;
  • невесомость.

Самой необычной и важной по действию на организм человека является именно невесомость. Это состояние, при котором исчезает сила гравитации и она не заменяется другими инерционными воздействиями. При этом человек полностью теряет способность контролировать положение тела в пространстве. Такое состояние начинается уже в нижних слоях космоса и сохраняется во всем его пространстве.

Медико-биологические исследования показали, что в состоянии невесомости в организме человека происходят следующие изменения:

  1. Учащается сердцебиение.
  2. Расслабляются мышцы (уходит тонус).
  3. Снижается работоспособность.
  4. Возможны пространственные галлюцинации.

Человек в невесомости способен находиться до 86 дней без вреда для здоровья. Это было доказано опытным путем и подтверждено с медицинской точки зрения. Однако одной из задач космической биологии и медицины на сегодня является разработка комплекса мер по предотвращению влияния невесомости на организм человека вообще, устранению утомляемости, повышению и закреплению нормальной работоспособности.

Существует ряд условий, которые соблюдают космонавты для преодоления невесомости и сохранения контроля над телом:


Для того чтобы добиться хороших результатов в преодолении невесомости, космонавты проходят тщательную подготовку на Земле. Но, к сожалению, пока современные не позволяют создать в лаборатории подобные условия. На нашей планете преодолеть силу тяжести не представляется возможным. Это также одна из задач на будущее для космической и медицинской биологии.

Перегрузки в космосе (ускорения)

Еще одним немаловажным фактором, воздействующим на организм человека, находящегося в космосе, являются ускорения, или перегрузки. Суть этих факторов сводится к неравномерному перераспределению нагрузки на тело при сильных скоростных движениях в пространстве. Выделяют два основных типа ускорения:

  • кратковременное;
  • длительное.

Как показывают медико-биологические исследования, и то и другое ускорение имеет очень важное значение в оказании влияния на физиологическое состояние организма космонавта.

Так, например, при действии кратковременных ускорений (они длятся менее 1 секунды) могут произойти необратимые изменения в организме на молекулярном уровне. Также, если органы не тренированы, достаточно слабы, есть риск разрыва их оболочек. Такие воздействия могут осуществляться при отделении капсулы с космонавтом в космосе, при катапультировании его или при посадках корабля на орбитах.

Поэтому очень важно, чтобы космонавты прошли тщательное медицинское обследование и определенную физическую подготовку перед полетом в космос.

Длительно действующее ускорение возникает при запуске и посадке ракеты, а также во время полета в некоторых пространственных местах космоса. Действие таких ускорений на организм по данным, которые предоставляют научные медицинские исследования, следующее:

  • учащается сердцебиение и пульс;
  • учащается дыхание;
  • наблюдается возникновение тошноты и слабости, бледность кожи;
  • страдает зрение, перед глазами появляется красная или черная пленка;
  • возможно ощущение боли в суставах, конечностях;
  • тонус мышечной ткани падает;
  • нервно-гуморальная регуляция меняется;
  • становится иным газообмен в легких и в организме в целом;
  • возможно появление потливости.

Перегрузки и невесомость заставляют ученых-медиков придумывать различные способы. позволяющие приспособить, натренировать космонавтов, чтобы они могли выдерживать действие этих факторов без последствий для здоровья и без потери работоспособности.

Один из самых эффективных способов тренировки космонавтов на ускорения - это аппарат центрифуга. Именно в нем можно пронаблюдать все изменения, которые происходят в организме при действии перегрузок. Также он позволяет натренироваться и приспособиться к влиянию этого фактора.

Полет в космос и медицина

Полеты в космос, безусловно, оказывают очень большое влияние на состояние здоровья людей, особенно нетренированных или имеющих хронические заболевания. Поэтому важным аспектом являются медицинские исследования всех тонкостей полета, всех реакций организма на самые разнообразные и невероятные воздействия внепланетных сил.

Полет в невесомости заставляет современную медицину и биологию придумывать и формулировать (вместе с тем и осуществлять, конечно) комплекс мер по обеспечению космонавтам нормального питания, отдыха, снабжения кислородом, сохранения работоспособности и так далее.

Кроме того, медицина призвана обеспечить космонавтам достойную помощь в случае непредвиденных, аварийных ситуаций, а также защиту от воздействий неизвестных сил других планет и пространств. Это достаточно сложно, требует много времени и сил, большой теоретической базы, использования только новейшего современного оборудования и препаратов.

Кроме того, медицина наравне с физикой и биологией имеет своей задачей защитить космонавтов от физических факторов условий космоса, таких как:

  • температура;
  • радиация;
  • давление;
  • метеориты.

Поэтому исследование всех этих факторов и особенностей имеет очень важное значение.

в биологии

Космическая биология, как и любая другая биологическая наука, обладает определенным набором методов, позволяющих проводить исследования, накапливать теоретический материал и подтверждать его практическими выводами. Эти методы с течением времени не остаются неизменными, подвергаются обновлениям и модернизации в соответствии с текущим временем. Однако исторически сложившиеся методы биологии все равно остаются актуальными и по сей день. К ним относятся:

  1. Наблюдение.
  2. Эксперимент.
  3. Исторический анализ.
  4. Описание.
  5. Сравнение.

Эти методы биологических исследований базовые, актуальные в любые времена. Но существует ряд других, которые возникли с развитием науки и техники, электронной физики и молекулярной биологии. Именно они называются современными и играют наибольшую роль в изучении всех биолого-химических, медицинских и физиологических процессах.

Современные методы

  1. Методы генной инженерии и биоинформатики. Сюда относится агробактериальная и баллистическая трансформация, ПЦР (полимеразные цепные реакции). Роль биологических исследований такого плана велика, поскольку именно они позволяют найти варианты решения проблемы питания и насыщения кислородом и кабин для комфортного состояния космонавтов.
  2. Методы белковой химии и гистохимии . Позволяют управлять белками и ферментами в живых системах.
  3. Использование флуоресцентной микроскопии , сверхразрешающей микроскопии.
  4. Использование молекулярной биологии и биохимии и их методов исследования.
  5. Биотелеметрия - метод, который является результатом сочетания работы инженеров и медиков на биологической основе. Он позволяет контролировать все физиологически важные функции работы организма на расстоянии при помощи радиоканалов связи тела человека и компьютером-регистратором. Космическая биология использует этот метод как основной для отслеживания воздействий условий космоса на организмы космонавтов.
  6. Биологическая индикация межпланетного пространства . Очень важный метод космической биологии, позволяющий оценивать межпланетные состояния среды, получать сведения о характеристиках разных планет. Основу здесь составляет применение животных со встроенными датчиками. Именно подопытные животные (мыши, собаки, обезьяны) добывают информацию с орбит, которая используется земными учеными для анализа и выводов.

Современные методы биологических исследований позволяют решать передовые задачи не только космической биологии, но и общечеловеческие.

Проблемы космической биологии

Все перечисленные методы медико-биологических исследований, к сожалению, не смогли пока решить все проблемы космической биологии. Существует ряд злободневных вопросов, которые остаются насущными и по сей день. Рассмотрим основные проблемы, с которыми сталкивается космическая медицина и биология.

  1. Подбор подготовленного персонала для полета в космос, состояние здоровья которого смогло бы удовлетворять всем требованиям медиков (в том числе позволило бы космонавтам выдерживать жесткую подготовку и тренировки для полетов).
  2. Достойный уровень подготовки и снабжения всем необходимым рабочих космических экипажей.
  3. Обеспечение безопасности по всем параметрам (в том числе и от неизведанных или инородных факторов воздействия с других планет) рабочим кораблям и авиаконструкциям.
  4. Психофизиологическая реабилитация космонавтов при возвращении на Землю.
  5. Разработка способов защиты космонавтов и от
  6. Обеспечение нормальных жизненных условий в кабинах при полетах в космос.
  7. Разработка и применение модернизированных компьютерных технологий в космической медицине.
  8. Внедрение космической телемедицины и биотехнологии. Использование методов этих наук.
  9. Решение медицинских и биологических проблем для комфортных полетов космонавтов на Марс и другие планеты.
  10. Синтез фармакологических средств, которые позволят решить проблему оснащенности кислородом в космосе.

Развитые, усовершенствованные и комплексные в применении методы медико-биологических исследований обязательно позволят решить все поставленные задачи и существующие проблемы. Однако когда это будет - вопрос сложный и довольно непредсказуемый.

Следует отметить, что решением всех этих вопросов занимаются не только ученые России, но и ученый совет всех стран мира. И это большой плюс. Ведь совместные исследования и поиски дадут несоизмеримо больший и быстрый положительный результат. Тесное мировое сотрудничество в решении космических проблем - залог успеха в освоении внепланетного пространства.

Современные достижения

Таких достижений немало. Ведь ежедневно проводится интенсивная работа, тщательная и кропотливая, которая позволяет находить все новые и новые материалы, делать выводы и формулировать гипотезы.

Одним из главнейших открытий XXI века в космологии стало обнаружение воды на Марсе. Это сразу же дало повод к рождению десятков гипотез о наличии или отсутствии жизни на планете, о возможности переселения землян на Марс и так далее.

Еще одним открытием стало то, что учеными были определены возрастные рамки, в пределах которых человек максимально комфортно и без тяжелых последствий может находиться в космосе. Данный возраст начинается от 45 лет и заканчивается примерно 55-60 годами. Молодые люди, отправляющиеся в космос, чрезвычайно сильно страдают психологически и физиологически по возвращении на Землю, тяжело адаптируются и перестраиваются.

Была обнаружена вода и на Луне (2009 г.). Также на спутнике Земли были найдены ртуть и большое количество серебра.

Методы биологических исследований, а также инженерно-физические показатели позволяют с уверенностью сделать вывод о безвредности (по крайней мере, не большей вредности, чем на Земле) воздействия ионной радиации и облучения в космосе.

Научные исследования доказали, что длительное пребывание в космосе не налагает отпечаток на состояние физического здоровья космонавтов. Однако проблемы остаются в психологическом плане.

Были проведены исследования, доказывающие, что высшие растения по-разному реагируют на нахождение в космических просторах. Семена одних растений при исследовании не проявили никаких генетических изменений. Другие же, наоборот, показали явные деформации на молекулярном уровне.

Опыты, проведенные на клетках и тканях живых организмов (млекопитающих) доказали, что космос не влияет на нормальное состояние и функционирование данных органов.

Различные виды медицинских исследований (томография, МРТ, анализы крови и мочи, кардиограмма, компьютерная томография и так далее) позволили сделать вывод о том, что физиологические, биохимические, морфологические характеристики клеток человека остаются неизменными при пребывании в космосе до 86 дней.

В лабораторных условиях была воссоздана искусственная система, позволяющая максимально приблизиться к состоянию невесомости и таким образом изучить все аспекты влияния этого состояния на организм. Это позволило, в свою очередь, разработать ряд профилактических мер по предотвращению воздействия этого фактора при полете человека в невесомости.

Результатами экзобиологии стали данные, свидетельствующие о наличии органических систем вне биосферы Земли. Пока стало возможным только теоретическое формулирование этих предположений, однако в скором времени ученые планируют добыть и практические доказательства.

Благодаря исследованиям биологов, физиков, медиков, экологов и химиков были выявлены глубокие механизмы воздействия людей на биосферу. Добиться этого стало возможным путем создания искусственных экосистем вне планеты и оказания на них такого же влияния, как и на Земле.

Это не все достижения космической биологии, космологии и медицины на сегодняшний день, а только основные. Существует большой потенциал, реализация которого и есть задача перечисленных наук на будущее.

Жизнь в космосе

По современным представлениям жизнь в космосе может существовать, так как последние открытия подтверждают наличие на некоторых планетах подходящих условий для возникновения и развития жизни. Однако мнения ученых в этом вопросе делятся на две категории:

  • жизни нет нигде, кроме Земли, никогда не было и не будет;
  • жизнь есть в необъятных просторах космического пространства, но люди еще не обнаружили ее.

Какая из гипотез верная - решать каждому лично. Доказательств и опровержений и для одной, и для другой достаточно.

Так или иначе, жизнь на нашей планете обязана своим возникновением сочетанию космических и планетарных условий, а теперь она в результате долгой эволюции и в лице своего представителя, человека, сама выходит непосредственно во Вселенную. Такова, видимо, закономерность развития жизни, относящаяся уже не к прошлому, а к будущему. Космос, планета и снова космос - вот вселенский цикл жизни, демонстрируемый ныне человечеством. Рожденная на Земле жизнь, выходя за пределы планеты, тем самым обнаруживает свою космическую устремленность. Таково «эволюционное» значение переживаемого нами космического века.

Земные микроорганизмы можно встретить на высоте до 100 километров. Этот рубеж обозначает предел естественной экспансии земной жизни в сторону космического пространства. Однако человек с помощью ракетно-космической техники, то есть «искусственно», не только сам выходит в космос, но и берет с собой животных и растения. Вначале (и это совершается уже теперь) исследуется воздействие условий космического полета на представителей земной жизни, а в перспективе предстоит освоение нового жизненного пространства, его обживание.

Цели биологических опытов в космосе многоплановы, они служат решению таких практических задач космонавтики, как определение степени опасности орбитального полета для живого существа (включая, разумеется, и самого человека), определение и создание возможности включать растения в систему жизнеобеспечения, использовать их в космических рейсах в качестве поглотителей углекислого газа, поставщиков кислорода и продуктов питания. Кроме того, космические биоэксперименты имеют фундаментальное научное значение. Они, например, помогают выяснить влияние радиации и невесомости на один из таинственных механизмов живого - генетический код, на «запись» наследственных признаков, передаваемых от родителей к детям, от одного живого организма к другому.

Безусловно, важны и для практики, и для науки также исследования поведения организмов, находящихся в длительном состоянии невесомости. В земных условиях такое состояние можно лишь имитировать (скажем, тренировки космонавтов в скафандрах в водной среде) или частично создать всего на несколько минут (тренировки в круто снижающемся, «падающем» самолете). Ученые считают, что, познав реакцию живого на невесомость, можно экспериментально выявить роль гравитации в зарождении и становлении жизни на Земле, то есть решить важнейшую научную и мировоззренческую проблему - проверить ту самую космологическую гипотезу о гравитации как определителе главных этапов развития жизни, о которой мы говорили.

Биологические эксперименты в космосе - дело тонкое и весьма специфическое. Начнем с того, что часто такие опыты проводятся без непосредственного участия исследователей, на автоматических спутниках. Для этого применяется сложное и в то же время максимально легкое и компактное оборудование – таково непременное требование выведения на орбиту полезного груза. Для высших животных, например, создаются автоматические системы, поставляющие кислород для дыхания, пищу и питье, удаляющие отходы жизнедеятельности. Первым живым существом, покинувшим планету, была собака Лайка, запущенная в 1957 году на втором советском спутнике спустя месяц после запуска знаменитого первого Спутника. Собаки запускались и после, возвращаясь уже живыми и здоровыми. А в 1983 и 1985 годах в космос летали и тоже благополучно возвращались на Землю обезьяны.

В пилотируемые полеты космонавты пока не берут с собой высших животных. Сложны и очень трудны космические эксперименты на живом материале. В корабле, с его невесомостью, не разложишь на столе инструменты, подопытных животных или даже растения, не расставишь баночки с питательным, проращивающим и фиксирующим растворами. Не успеешь оглянуться, как все это окажется в воздухе, разлетится по отсеку. И это не только срыв опыта, но и угроза всей программе полета, а может быть, и здоровью членов экипажа. Взвешенные в воздухе мельчайшие капли жидкости могут попасть в дыхательные пути человека, нарушить работу сложной аппаратуры. Да и не все вещества здесь можно держать в открытых сосудах. Те, которые даже в малой степени вредны человеку (а с такими веществами биологам нередко приходится иметь дело), требуют строгой герметизации. К этому надо добавить, что работа космонавтов даже в длительных, многомесячных полетах расписана буквально по минутам; помимо биологических, они выполняют множество других программ. Отсюда - еще одно непременное требование ко всем экспериментам: максимальная простота операций.

О том, как ученые распутывают этот клубок противоречий между задачами исследования и жесткой ограничительностью условий его проведения, как ставят интересные опыты, мы расскажем на примере экспериментов с плодовой мушкой - дрозофилой.

Эти насекомые, ветераны космобиологических исследований, стартовали в биоспутниках, в пилотируемых кораблях, совершали путешествия к Луне и обратно на автоматических аппаратах «Зонд». Содержание мушек в космосе особых хлопот не доставляет. Они не нуждаются в специальных блоках с системой жизнеобеспечения. Достаточно хорошо чувствуют они себя в обыкновенной пробирке, на дно которой налито немного питательного бульона.

На станциях «Салют» эксперименты с дрозофилой проводились в специальных термостатах при постоянной, строго контролируемой температуре. Биоконтейнер, предназначенный для опытов на развивающихся личинках и куколках, состоит из четырех пластмассовых пробирок, вставленных в гнезда прямоугольной подставки из пенопласта. Пробирки устанавливают в термостат, в котором автоматически поддерживается температура +25 градусов. Прибор этот, летавший на «Союзах» И «Салютах», легок и компактен, никаких особых действий и наблюдений в полете не требует. По завершении эксперимента, когда выращено одно поколение мушек, биоконтейнер вынимается из термостата и пересылается в очередном транспортном корабле на Землю.

Однако гораздо интереснее получить в невесомости несколько поколений дрозофил: получились бы самые настоящие «эфирные существа», если воспользоваться терминологией Циолковского, которые не только развиваются, но и рождаются в космосе. Да и не в терминологии тут дело, а в экспериментальном подтверждении одной из смелейших гипотез калужского ученого.

Для экспериментов такого рода создан другой прибор. Представляет он собой пластмассовый куб с гранью длиной около 10 сантиметров, собранный из секций с питательной средой и дверками между ними. В Полете космонавты вынимают в нужное время этот куб из термостата и открывают насекомым, находящимся в первой секции, доступ во вторую. Мушки откладывают на новой «жилплощади» яички, давая жизнь следующему поколению. Из таких яичек выходят уже чисто космические личинки. Они, в свою очередь, превращаются в куколок, затем в мух, которые переводятся в следующий отсек прибора и там выводят очередное космическое потомство.

Именно так и происходило в действительности. Живые существа, пусть пока только мухи-дрозофилы, способны жить и размножаться вне Земли. Этот важный и многообещающий вывод, сделанный на основе космического эксперимента, доказывает, что жизнь и космос друг другу не противопоказаны.

Западное медицинское исследование и наблюдение за 12 астронавтами показало, что при продолжительном нахождении в условиях микрогравитации сердце человека на 9,4 процента сильнее приобретает сферическую форму, что в свою очередь может вызывать самые различные проблемы с его работой. Особенно актуальной эта проблема может стать при длительных космических путешествиях, например, к Марсу.

«Сердце в космосе работает совсем не так, как оно работает в условиях земной гравитации, что в свою очередь может привести к утрате его мышечной массы», — говорит доктор Джемс Томас из NASA.

«Все это повлечет за собой серьезные последствия после возвращения на Землю, поэтому в настоящий момент мы ищем возможные способы, которые позволят избежать или по крайней мере снизить эту потерю мышечной массы».

Специалисты отмечают, что после возвращения на Землю сердце обретает свою изначальную форму, однако никому не известно, как один из важнейших органов нашего организма поведет себя после долгих перелетов. Докторам уже известны случаи, когда вернувшиеся обратно астронавты испытывали головокружение и дезориентацию. В некоторых случаях отмечается резкое изменение в артериальном давлении (происходит его резкое снижение), особенно когда человек пытается встать на ноги. Помимо этого, у некоторых астронавтов во время миссий наблюдается аритмия (нарушение сердечного ритма).

Исследователи отмечают необходимость в разработке методов и правил, которые позволят путешественникам дальнего космоса избежать данные виды проблем. Как отмечается, такие методы и правила могли бы пригодиться не только космонавтам, но и обычным людям на Земле — испытывающим проблемы работы сердца, а также тем, кому прописан постельный режим.

В настоящий момент началась пятилетняя исследовательская программа, задачей которой будет определение уровня воздействия космоса на ускорение развития у космонавтов атеросклероза (болезнь кровеносных сосудов).

Пьянство и психические расстройства


Несмотря на то, что проведенный NASA анонимный опрос снял подозрения в частом употреблении астронавтами алкогольных напитков, в 2007 году произошли два случая, когда фактически пьяных астронавтов из NASA допустили для полета внутри российского космического корабля «Союз». При этом лететь людям разрешили даже после того, как медики, готовившие этих астронавтов к полету, а также другие участники миссии рассказали начальству о весьма горячей кондиции своих коллег.

Согласно политике безопасности того времени, NASA говорило об официальном запрете употребления астронавтами алкоголя за 12 часов перед тренировочными полетами. Действие этого правила также негласно предполагалось и на время космических полетов. Однако после вышеописанного инцидента, NASA возмутила такая беспечность астронавтов, что агентство решило сделать это правило в отношении космических полетов официальным.

Бывший астронавт Майк Маллэйн рассказал однажды о том, что астронавты употребляли алкоголь перед полетом для дегидратации организма (алкоголь обезвоживает), чтобы в конечном итоге снизить нагрузку на мочевой пузырь и в момент запуска внезапно не захотеть в туалет.

Свое место среди опасностей в рамках космических миссий имел также и психологический аспект. Во время космической миссии Skylab 4 астронавтам настолько «надоело» общаться с центром управления космическими полетами, что они почти на сутки отключили радиосвязь и игнорировали поступающие от NASA сообщения. После этого инцидента ученые стараются определить и решить потенциальные негативные психологические эффекты, которые могут возникнуть в рамках более стрессовых и продолжительных миссий к Марсу.

Недостаток сна и использование снотворных


Десятилетнее исследование показало, что последние недели перед запуском и во время начала космических миссий астронавты явно недосыпают. Среди опрошенных три из четырех признавались, что употребляли медицинские средства, которые помогали им уснуть, даже невзирая на то, что употребление подобных медикаментов могло быть опасным во время управления космическим аппаратом и при работе с другим оборудованием. Опаснее всего ситуация в таком случае могла бы оказаться тогда, когда астронавты принимали одно и то же лекарство и в одно и то же время. В таком случае в момент возникшей чрезвычайной ситуации, требующей экстренного решения, они могли бы ее просто проспать.

Несмотря на то, что NASA приписало каждому астронавту спать как минимум восемь с половиной часов в день, большинство из них каждодневно отдыхали всего около шести часов во время выполнения миссий. Серьезность такой нагрузки на организм усугублялась еще и тем, что в течение последних трех месяцев тренировок перед полетом люди ежедневно спали менее шести с половиной часов.

«Будущие миссии на Луну, Марс и дальше потребуют разработки более эффективных мер для решения вопросов нехватки сна и оптимизации производительности человека во время космического полета», — говорит старший исследователь данного вопроса доктор Чарльз Кзейлер.

«Эти меры могут включать изменения графика работ, которые будут выполняться с учетом воздействия на человека определенных световых волн, а также изменения в поведенческой стратегии экипажа для более комфортного входа в состояние сна, которое обязательно необходимо для восстановления здоровья, сил и хорошего настроения на следующий день».

Потеря слуха


показали, что еще со времен миссий космических шаттлов у некоторых астронавтов отмечались случаи временной значительной и менее значительной потери слуха. Отмечались они чаще всего при воздействии на людей высоких звуковых частот. У членов экипажа советской космической станции «Салют-7» и российского «Мира» также регистрировались незначительные или весьма значительные эффекты снижения слуха после возвращения на Землю. Опять же во всех этих случаях причиной частичной или полной временной потери слуха являлось воздействие высоких звуковых частот.

Экипажу Международной космической станции предписано каждодневное ношение беруш. Для снижения шума на борту МКС, помимо прочих мер, было предложено использование специальных звукоизоляционных прокладок внутри стен станции, а также установка более тихих вентиляторов.

Однако, помимо шумного фона, на потерю слуха могут влиять и другие факторы: например, состояние атмосферы внутри станции, повышение внутричерепного давления, а также повышенный уровень углекислого газа внутри станции.

В 2015 году NASA планирует с помощью экипажа МКС начать изучение возможных способов избегания эффектов потери слуха во время годичных миссий. Ученые хотят посмотреть, насколько долго можно избегать подобных эффектов, и выяснить приемлемый риск, связанный с потерей слуха. Ключевой задачей эксперимента будет определение того, как минимизировать потерю слуха полностью, а не только во время конкретно взятой космической миссии.

Камни в почках


У каждого десятого человека на Земле рано или поздно проявляется проблема камней в почках. Однако данный вопрос становится гораздо острее, когда речь заходит об астронавтах, потому как в условиях космоса кости организма начинают терять полезные вещества еще быстрее, чем на Земле. Внутрь организма выделяются соли (фосфат кальция), которые проникают через кровь и накапливаются в почках. Эти соли могут утрамбовываться и обретать форму камней. При этом размер этих камней может варьироваться от микроскопического до вполне себе серьезного — вплоть до размера с грецкий орех. Проблема заключается в том, что эти камни могут блокировать сосуды и другие потоки, которые питают орган или выводят из почек лишние вещества.

Для астронавтов риск развития почечных каменей опаснее тем, что в условия микрогравитации может снижаться объем крови внутри организма. Кроме того, многие астронавты не пьют по 2 литра жидкостей в день, которые, в свою очередь, могли бы обеспечить полную гидратацию их организма и не позволять камням застаиваться в почках, выводя их частички вместе с мочой.

Отмечается, что как минимум у 14 американских астронавтов развилась проблема с камнями в почках практически разу же после завершения их космических миссий. В 1982 году был зафиксирован случай острой боли у члена экипажа на борту советской станции «Салют-7». Космонавт в течение двух дней мучился от сильнейших болей, в то время как его товарищу ничего не оставалось, как беспомощно наблюдать за страданиями своего коллеги. Сначала все подумали на острый аппендицит, однако через время вместе с мочой у космонавта вышел небольшой почечный камень.

Ученые весьма долгое время разрабатывали специальную ультразвуковую машину размером с настольный компьютер, которая позволяет обнаруживать камни в почках и выводить их с помощью импульсов звуковых волн. Думается, на борту корабля, следующего к Марсу, такая штука могла бы определенно пригодиться.

Заболевания легких


Несмотря на то, что мы пока с точностью не знаем, какие негативные эффекты для здоровья может вызывать пыль с других планет или астероидов, ученым все же известны некоторые весьма неприятные последствия, которые могут проявляться в результате воздействия лунной пыли.

Самый серьезный эффект вдыхания пыли, вероятнее всего, отразится на легких. Однако невероятно острые частицы лунной пыли могут нанести серьезные повреждения не только легким, но и сердцу, заодно вызвав целый букет различных недугов, начиная от сильнейшего воспаления органов и заканчивая раком. Аналогичные эффекты может вызывать, например, асбест.

Острые частицы пыли могут нанести вред не только внутренним органам, но и вызывать воспаление и ссадины на коже. Для защиты необходимо использование специальных многослойных кевлароподобых материалов. Лунная пыль может с легкостью повредить роговицы глаз, что в свою очередь может оказаться наиболее серьезной экстренной ситуацией для человека в космосе.

Ученые с сожалением отмечают, что неспособны смоделировать лунный грунт и провести полный набор тестов, необходимых для определения воздействия лунной пыли на организм. Одна из сложностей в решении этой задачи заключается в том, что на Земле частицы пыли не находятся в вакууме и не подвергаются постоянному воздействию радиации. Лишь дополнительные исследования пыли непосредственно на поверхности самой Луны, а не в лаборатории, смогут обеспечить ученых необходимыми данными для разработки эффективных методов защиты от этих крошечных токсичных убийц.

Сбой иммунной системы


Наша иммунная система меняется и отвечает на любые, даже самые малейшие изменения в нашем организме. Недостаток сна, недостаточный прием питательных веществ или даже обычный стресс — все это ослабляет нашу иммунную систему. Но это на Земле. Изменение же иммунной системы в космосе может в конечном итоге обернуться обычной простудой либо нести потенциальную опасность в развитии куда более серьезных заболеваний.
В космосе распределение иммунных клеток в организме изменяется не сильно. Куда большую угрозу для здоровья могут повлечь за собой изменения в функционировании этих клеток. Когда функционирование клетки снижается, уже подавленные вирусы, находящиеся в человеческом организме, могут заново пробудиться. И сделать это фактически скрытно, без проявления симптомов болезни. При повышении активности иммунных клеток иммунная система слишком остро реагирует на раздражители, вызывая аллергические реакции и другие побочные эффекты вроде сыпи на коже.

«Такие вещи, как радиация, микробы, стресс, микрогравитация, нарушение сна и даже изоляция — все они могут повлиять на изменение работы иммунной системы членов экипажа», — говорит иммунолог NASA Брайан Крушин.

«В рамках долгих космических миссий будет повышаться риск развития инфекций, гиперчувствительности, а также аутоиммунных проблем у астронавтов».

Для решения проблем с иммунной системой NASA планирует использовать новые методы антирадиационной защиты, новый подход к сбалансированному питанию и лекарствам.

Радиационные угрозы


Нынешнее очень необычное и весьма продолжительное отсутствие солнечной активности может способствовать опасным изменениям уровня радиации в космосе. Ничего подобного не происходило почти в течение последних 100 лет.

«Несмотря на то, что подобные события необязательно являются останавливающим фактором для долгих миссий к Луне, астероидам и даже к Марсу, галактическая космическая радиация сама по себе является тем фактором, который может ограничить запланированное время проведения этих миссий», — говорит Нэйтан Швадрон из Института земных, океанических и космических исследований.

Последствия такого рода воздействия могут быть самыми разными, начиная от лучевой болезни и заканчивая развитием рака или поражением внутренних органов. Кроме того, опасные уровни радиационного фона сокращают эффективность антирадиационной защиты космического корабля примерно на 20 процентов.

В рамках всего лишь одной миссии на Марс астронавт может подвергнуться 2/3 той безопасной дозы излучения, которой человек может подвергнуться в худшем случае в течение всей своей жизни. Это излучение может вызвать изменения в ДНК и увеличить риск развития рака.

«Если говорить о накопительной дозе, то это тоже самое, что проводить полное КТ-сканирование организма каждые 5-6 дней», — говорит ученый Кэри Цейтлин.

Когнитивные проблемы


При симуляции состояния нахождения в космосе ученые обнаружили, что воздействие высокозаряженных частиц даже в малых дозах заставляет лабораторных крыс реагировать на окружение гораздо медленнее, и при этом грызуны становятся более раздражительными. Наблюдение за крысами также показало изменение в составе белка в их мозге.

Однако ученые спешат отметить, что не на всех крысах проявлялись одинаковые эффекты. Если это правило действительно и в случае с астронавтами, то, по мнению исследователей, они смогли бы определить биологический маркер, указывающий и предсказывающий скорое проявление этих эффектов у астронавтов. Возможно, этот маркер даже позволил бы найти способ снизить негативные последствия от воздействия радиации.

Более серьезную проблему представляет болезнь Альцгеймера.

«Воздействие уровня радиации, эквивалентного тому, которое придется испытать человеку во время полета на Марс, может способствовать развитию когнитивных проблем и ускорять изменения в работе мозга, которые чаще всего ассоциируют с болезнью Альцгеймера», — говорит невролог Керри О’Бэнион.

«Чем дольше находишься в космосе, тем больше риск развития заболевания».

Один из утешительных фактов заключается в том, что ученые уже успели исследовать один из самых неудачных сценариев воздействия излучения. Они за один раз подвергли лабораторных мышей такому уровню излучения, которое являлось бы характерным для всего времени в рамках миссии на Марс. В свою очередь, люди при полете на Марс будут подвергаться излучению дозированно, в течение трех лет полета. Ученые считают, что человеческий организм может адаптироваться к таким небольшим дозам.

Помимо этого, отмечается, что пластик и легковесные материалы могут обеспечить людям более эффективную защиту от излучения, по сравнению с используемым сейчас алюминием.

Потеря зрения


У некоторых астронавтов отмечается развитие серьезных проблем со зрением после пребывания в космосе. Чем дольше длится космическая миссия, тем вероятнее шанс подобных печальных последствий.

По крайней мере среди 300 американских астронавтов, проходивших медицинскую проверку с 1989 года, проблемы со зрением наблюдались у 29 процентов людей, находившихся в космосе в течение двухнедельных космических миссий, и у 60 процентов людей, которые в течение нескольких месяцев работали на борту Международной космической станции.

Врачи из Техасского университета провели сканирование мозга у 27 астронавтов, проведших в космосе более месяца. У 25 процентов из них наблюдалось уменьшение объема передне-задней оси одного или сразу двух глазных яблок. Такое изменение приводит к дальнозоркости зрения. Опять же отмечалось, чем дольше человек находится в космосе, тем вероятнее данное изменение.

Ученые считают, что объясняться этот негативный эффект может подъемом жидкости к голове в условиях мигрогравитации. В данном случае в черепной коробке начинает накапливаться цереброспинальная жидкость, повышается внутричерепное давление. Просачиваться сквозь кость жидкость не может, поэтому начинает создавать давление на внутреннюю часть глаз. Исследователи пока не уверены, будет ли уменьшаться данный эффект у астронавтов, прибывающих в космосе более шести месяцев. Однако вполне очевидно, что выяснить это будет нужно до того момента, как засылать людей на Марс.

Если проблема вызвана исключительно внутричерепным давлением, то одним из возможных вариантов ее решения будет создание условий искусственной гравитации, каждый день по восемь часов, во время сна астронавтов. Однако говорить о том, поможет ли данный метод или нет — пока рано.

«Эта проблема требует решения, потому что в противном случае она может оказаться главной причиной невозможности длительных космических путешествий», — говорит ученый Марк Шелхамер.

Муниципальное бюджетное общеобразовательное учреждение

основная общеобразовательная школа №8

Областной конкурс «Космонавтика»

Номинация «Космическая биология и медицина»

«Человек и космос: биологические и медицинские исследования в космосе»

Работу выполнила

Виниченко Наталья Васильевна

учитель математики и физики

город Донецк Ростовской области

2016 год.

Введение Космическая биология и медицина - комплексная наука, изучающая особенности жизнедеятельности человека и других организмов в условиях космического полета. Основной задачей исследований в области космической биологии и медицины является разработка средств и методов жизнеобеспечения, сохранения здоровья и работоспособности членов экипажей космических кораблей и станций в полетах различной продолжительности и степени сложности. Космическая биология и медицина неразрывно связана с космонавтикой, астрономией, астрофизикой, геофизикой, биологией, авиационной медициной и многими другими науками.

Актуальность темы довольно большая в наш современный и стремительный XXI век.

Тема «Медицинские и биологические исследований в космосе» нас заинтересовала и мы решили сделать исследовательскую работу на эту тему.

2016 год является юбилейным – 55 лет со дня первого человеческого полета в космос. С глубокой древности человека манило и привлекало к себе звёздное небо. Мечта о создании летательных аппаратов нашла своё отражение в мифах, легендах и сказаниях практически всех народов мира. Человеку очень хотелось летать. Сначала он решил сделать себе крылья, как у птицы. Забирался повыше в горы и прыгал с такими крыльями вниз. Но в результате только ломал руки, ноги, однако это не заставило человека отказаться от своей мечты. И он придумал металлическую птицу с неподвижными крыльями и назвал её самолёт. Прошли годы, развивалась современная авиация. Её развитие - целая история с множеством прекрасных и очень интересных страниц науки. Во все концы Земли идут экспедиции. Учёные ищут, находят и вновь исследуют неведомое, чтобы отдать его людям. Проникнув в космос, люди открыли не просто новое пространство, открыт огромный, необычный мир, подобный неизведанному материку. Уникальные условия - вакуум, невесомость, низкие температуры - создали новые отрасли науки и производства.

Наш замечательный учёный К. Э. Циолковский говорил:

«…Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе всё околосолнечное пространство».

Сейчас мы являемся свидетелями того, как сбываются пророческие слова учёного. Бурное развитие науки и техники сделало возможным выведение на околоземную орбиту в октябре 1957 года первого искусственного спутника Земли. В 1961 году человек впервые шагнул из своей «колыбели» в бескрайние просторы вселенной. А спустя четыре года вышел за порог космического корабля и взглянул на Землю, со стороны, через тонкое стекло скафандра. Так началась космическая эра человечества, началось освоение космоса, началось становление новой особой профессии - космонавт. Начало этой профессии было положено полётом первого космонавта планеты Ю. А. Гагарина.

Космонавт-это человек, который испытывает космическую технику и работает на ней в космосе.

Космонавт-это исследователь. Каждый день на орбите - это экспериментальная работа в космической лаборатории.

Космонавт исполняет роль биолога, проводя наблюдения за живыми организмами.

Космонавт-это медик, когда участвуют в медицинских исследованиях здоровья членов экипажа.

Космонавт-это строитель, монтажник.

Учёные убедились, что живые существа могут жить в невесомости. Путь в космос был открыт. А полёт Гагарина доказал, что человек может подняться в космос и невредимым вернуться на Землю.
Начало. Медико-биологические исследования в середине XX века.

Отправными в становлении космической биологии и медицины считаются следующие вехи: 1949 г. - впервые появилась возможность проведения биологических исследований при полетах ракет; 1957 г. - впервые живое существо (собаку Лайку) отправили в околоземный орбитальный полет на втором искусственном спутнике Земли; 1961 г. - первый пилотируемый полет в космос, совершенный Ю. А. Гагариным. С целью научного обоснования возможности безопасного в медицинском отношении полета человека в космос исследовалась переносимость воздействий, характерных для старта, орбитального полета, спуска и посадки на Землю космических летательных аппаратов, а также испытывалась работа биотелеметрической аппаратуры и систем обеспечения жизнедеятельности космонавтов. Основное внимание уделялось изучению влияния на организм невесомости и космического излучения. Лайка (собака-космонавт) 1957 г. Р езультаты, полученные при проведении биологических экспериментов на ракетах, втором искусственном спутнике (1957 г.), вращаемых космических кораблях-спутниках (1960-1961 гг.), в совокупности с данными наземных клинических, физиологических, психологических, гигиенических и других исследований фактически открыли путь человеку в космос. Кроме этого, биологические эксперименты в космосе на этапе подготовки первого космического полета человека позволили выявить ряд функциональных изменений, возникающих в организме при действии факторов полета, что явилось основанием для планирования последующих экспериментов на животных и растительных организмах в полетах пилотируемых космических кораблей, орбитальных станций и биоспутников. Первый в мире биологический спутник с подопытным животным - собакой «Лайкой». Выведен на орбиту 03.11.1957 г. И находился там 5 месяцев. Спутник просуществовал на орбите до 14.04.1958 г. На спутнике имелось два радиопередатчика, телеметрическая система, программное устройство, научные приборы для исследования излучения Солнца и космических лучей, системы регенерации и терморегулирования для поддержания в кабине условий, необходимых для существования животного. Получены первые научные сведения о состоянии живого организма в условиях космического полета .


Мало кто знает, что перед тем как отправить в космос человека, проводились многочисленные эксперименты на животных с целью выявления воздействия на живой организм невесомости, радиации, длительного полета и других факторов. Первые полёты животные совершили в стратосферу. В первый полет на воздушном шаре человек отправил барана, петуха и утку. С 1951 г. по 1960 г. были проведены серии экспериментов по изучению реакции живого организма на перегрузки, вибрации и невесомость во время запусков геофизических ракет. Во второй серии запусков в 1954-1956 гг. на высоту 110 км целью экспериментов было опробование скафандров для животных в условиях разгерметизации кабины. Были проведены катапультирования животных в скафандрах: одной собаки – с высоты 75-86 км, второй – с высоты 39-46 км. Полёты с животными не прекращены и сегодня. Полеты в космос животных и сейчас дают массу полезной информации. Так, полет спутника «Бион-М» с разными живыми организмами на борту, длившийся один месяц, дал много материала для изучения воздействия радиации и длительной невесомости на жизнедеятельность организма.

Ес ли раньше учёных интересовало воздействие перегрузок и космической радиации на живые организмы, то теперь основное внимание уделяется работе нервной и иммунной систем. Не менее важно изучение влияния факторов космического полета на регенеративные и репродуктивные функции организма. Особенно интересна задача воссоздания полного цикла биологического воспроизводства в условиях невесомости. Почему? Рано или поздно, нас ждут поселения в космосе и сверхдальние полеты к другим звездам.

Но до того, как полеты в космос удались, 18 собак погибли при испытаниях. Их смерть не была бесполезной. Только благодаря животным полеты в космос стали возможны и человеку. А то, что космос необходим людям, сегодня не сомневается никто. Перед первым длительным полетом на 18 суток Николаева и Севастьянова в космос отправили собак Ветерка и Уголька на 22 дня. Интересно, что в космос всегда отправляли только дворняжек. Причина? Более сообразительны и выносливы, чем их породистые собратья. Вернулись из космоса Ветерок и Уголек совершенно голые. То есть без шерсти, которая осталась в плохо подогнанных скафандрах, о которые собаки все эти нескончаемые дни терлись. Показано, что основным экологическим фактором наблюдаемых в организме сдвигов в космических полетах является невесомость. Однако она не вызывает генных и хромосомных мутаций, механизм клеточного деления, как правило, не нарушается естествознания.

22 марта 1990 года перепеленок, пробивший скорлупу пестренького серо-коричневого яичка в специальном космическом инкубаторе, был первым живым существом, родившимся в космосе. Это была сенсация! Конечная цель опытов с японскими перепелами в невесомости - создание системы жизнеобеспечения экипажей космических кораблей во время сверх длительных межпланетных космических полетов. С грузовым кораблем на орбитальную станцию «Мир» отправился контейнер с 48 яичками перепела, который космонавты аккуратно поместили в космическое «гнездо». Ожидание было напряженным, но точно на 17-й день лопнуло на орбите первое пятнистое яичко. Новый космический житель массой всего 6 граммов проклюнул скорлупку. К радости биологов, то же произошло и в контрольном инкубаторе на Земле. За первым цыпленком появился второй, третий... Здоровенькие, шустрые, они хорошо реагировали на звук и свет, обладали клевательным рефлексом. Однако в космосе мало родиться, нужно приспособиться к его жестким условиям. Увы...

Перепелята не смогли адаптироваться к невесомости. Они, как пушинки, хаотически летали внутри каюты, не умея зацепиться за решетку. Из-за отсутствия фиксации тела в пространстве они не смогли самостоятельно кормиться и впоследствии погибли. Впрочем, 3 птенца вернулись на Землю, пережив еще и перелет обратно. Но, по словам биологов, в этом эксперименте было доказано главное - невесомость не оказалась непреодолимым препятствием для развития организма.

До полёта людей в космос в целях изучения биологического воздействия космических путешествий в орбитальные и суборбитальные полёты в космическое пространство запускали некоторых животных, в том числе наиболее близких к человеку по физиологии многочисленных обезьян. В процессе подготовки к полетам ученые выяснили, что обезьянки для полета в космосе осваивают задание всего за 2 месяца и действительно кое в чем превосходят людей. Например, в скорости реакции. На выполнение упражнения «тушение мишеней» обезьянке требовалось 19 минут. А человеку на то же задание - час! Испытания в процессе полетов ракет и первых искусственных спутников Земли открыли путь человеку в космос и во многом предопределили развитие пилотируемой космонавтики. Были обнаружены следующие изменения: инактивация клеток; появление генных и хромосомных мутаций; возникновение потенциальных повреждений, которые лишь спустя некоторое время реализуются в мутации; нарушения протекания митоза.

Все это указывает на то, что факторы космического полета способны вызывать весь объем генетических изменений в хромосомах. Достижения в области космической биологии и медицины внесли существенный вклад в решение проблем общей биологии и медицины. Большое влияние космическая биология оказала на экологию, в первую очередь экологию человека и изучение взаимосвязи процессов жизнедеятельности с абиотическими факторами окружающей среды. Работы по космической биологии ведутся на различных видах живых организмов, начиная с вирусов и кончая млекопитающими. Для исследований в космическом пространстве в СССР уже использовано свыше 56, а в США свыше 36 видов биологических объектов.

У этого биологического исследования долгая история, длившаяся последние 40 лет, где НАСА и Россия сотрудничают на протяжении всего этого времени, что довольно примечательно", сообщает Николь Рауль, руководитель части проекта НАСА. Пока проект находится в ведении Роскосмоса, международная группа ученых наблюдает за экспериментами миссии. Бион-М1 является первой миссией России, посвященной запуску животных в космос за 17 лет. Последняя миссия Бион отправила макак-резусов, гекконов и амфибий на орбиту на 15 дней в 1996 году.

Бион-М1 предназначен помочь ученым понять, как могут повлиять длительные полеты в космос на астронавтов. "Уникальная природа этой миссии в том, что это 30-дневная миссия. Большинство других миссий не отправляли на столь длительный срок животных в космос", сообщает Рауль. "Большое значение для нас является то, что мы получим данные для сравнения с уже имеющимися на сегодня» Один из экспериментов НАСА посвящен тому, как микрогравитация и излучение влияет на подвижность сперматозоидов у мышей. Если люди собираются посетить другие планеты во время длительных перелетов, важно понять, будут ли они в состоянии производить потомство в космосе. На некоторые миссии могут уйти десятилетия, поэтому космическое воспроизведение может быть необходимостью. Хотя один из ученых НАСА будет изучать подвижность сперматозоидов у мышей, нет никаких шансов, что животные будут спаривать во время полета, поэтому для этого путешествия были отобраны лишь самцы. Помимо научного аппарата «Бион-М» ракета «Союз-2.1а» выведет на орбиту шесть малых спутников, среди которых российский АИСТ, американский Dove-2, южнокорейский спутник G.O.D.Sat, немецкие BeeSat-2, Beesat-3 и SOMP.

В полете «Союза-13» исследовалось влияние факторов космического полета на развитие низших растений - хлореллы и ряски. Проводилось изучение особенностей развития двух видов микроорганизмов - водородных бактерий и уробактерий - в условиях невесомости и получение в результате эксперимента белковой массы для последующего анализа ее биохимического состава. Межпланетные перелеты могут стать реальностью, лишь когда будут созданы надежные системы жизнеобеспечения с замкнутым циклом. Выполненные эксперименты способствовали решению этой сложной проблемы. На борту «Союза-13» действовала замкнутая экологическая система «Оазис-2» - биолого-техническая система для культивирования некоторых видов микроорганизмов. Эта установка представляла собой два цилиндра, ферментеры для микроорганизмов, в которых находились жидкость и газ, переходивший из одного цилиндра в другой. В один из ферментеров помещались водородоокисляющие бактерии - микроорганизмы, использующиеся в качестве источника энергии для роста, в основном свободный водород, полученный в результате электролиза воды. В другом ферментере находились уробактерии, способные разлагать мочевину. Они поглощали кислород, образовавшийся в первом цилиндре, и выделяли углекислоту. В свою очередь, углекислота использовалась водородоокисляющими бактериями для синтеза биомассы. Таким образом действовала замкнутая система, происходило постоянное восстановление двух видов микроорганизмов Система полностью была изолирована от атмосферы корабля, но в принципе микроорганизмы с таким же успехом могли поглощать углекислоту из атмосферы кабины, а биомасса служить пищей для космонавтов. Пробы массы, отобранные членами экипажа, были доставлены на Землю для тщательного изучения. Биомасса микробной культуры в системе «Оазис-2» увеличилась за время полета более чем в 35 раз. Результаты этого эксперимента стали важным шагом для создания новых систем жизнеобеспечения.

1 этап биологических исследований .

В 1940-1950гг проводились полеты собак с целью изучения: Герметичности кабины. Методы катапультирования и парашютирования с большой высоты. Биологическое действие космического излучения

Вывод: Переносимость высокоорганизованных животных режимов ускорения при ракетном полете и в состоянии динамической невесомости до 20 минут

2 этап исследований. Длительный полет собаки Лайки на советском ИСЗ-2.

3 этап биологических исследований связан с созданием космических кораблей-спутников (ККС), позволивших резко расширить «экипаж» новых биологических объектов собаках, крысах, мышах, морских свинках, лягушках, мухах-дрозофилах, высших растениях (традесканция, семена пшеницы, гороха, лука, кукурузы, нигеллы, проростки растений в разных стадиях развития), на икре улитки, одноклеточных водорослях (хлорелла), культуре тканей человека и животных, бактериальных культурах, вирусах, фагах, некоторых ферментах.

программы исследований на трассе Земля - Луна - Земля

Исследования осуществлялись станций серии «3онд» с сентября 1968 по октябрь станций размещали черепах, дрозофил, лук репчатый, семена растений, разные штаммы хлореллы, кишечной палочки

Изучали влияние излучения ионизирующих излучений.

В результате большое число перестроек хромосом отмечалось у семян сосны, ячменя, увеличение числа мутантов - у хлореллы . Сальмонелла стала агрессивней. Комплекс экспериментов с различными биообъектами (семена, высшие растения, икра лягушек, микроорганизмы и т. д.) был проведён на советском ИСЗ «Космос-368» (1970).

В результате проведённых биологических исследований установлено, что человек может жить и работать в условиях космического полёта сравнительно продолжительное время.

Так как человечество собирается в относительно недалеком будущем все-таки начать колонизацию Луны и других космических тел нашей Солнечной системы, то, скорее всего, вы хотели бы узнать о тех рисках и проблемах со здоровьем, которые могут с определенной долей вероятности проявиться у космических колонистов?

Исследования показали 10 самых вероятных проблем со здоровьем, с которыми придется столкнуться (если мы их не решим до этого момента) пионерам эры человеческих космических колонизаций.

Проблемы с сердцем

Западное медицинское исследование и наблюдение за 12 астронавтами показало, что при продолжительном нахождении в условиях микрогравитации сердце человека на 9,4 процента сильнее приобретает сферическую форму, что в свою очередь может вызывать самые различные проблемы с его работой. Особенно актуальной эта проблема может стать при длительных космических путешествиях, например, к Марсу.

«Сердце в космосе работает совсем не так, как оно работает в условиях земной гравитации, что в свою очередь может привести к утрате его мышечной массы», - говорит доктор Джемс Томас из NASA.

«Все это повлечет за собой серьезные последствия после возвращения на Землю, поэтому в настоящий момент мы ищем возможные способы, которые позволят избежать или по крайней мере снизить эту потерю мышечной массы».

Специалисты отмечают, что после возвращения на Землю сердце обретает свою изначальную форму, однако никому не известно, как один из важнейших органов нашего организма поведет себя после долгих перелетов. Докторам уже известны случаи, когда вернувшиеся обратно астронавты испытывали головокружение и дезориентацию. В некоторых случаях отмечается резкое изменение в артериальном давлении (происходит его резкое снижение), особенно когда человек пытается встать на ноги. Помимо этого, у некоторых астронавтов во время миссий наблюдается аритмия (нарушение сердечного ритма).

Исследователи отмечают необходимость в разработке методов и правил, которые позволят путешественникам дальнего космоса избежать данные виды проблем. Как отмечается, такие методы и правила могли бы пригодиться не только космонавтам, но и обычным людям на Земле - испытывающим проблемы работы сердца, а также тем, кому прописан постельный режим.

В настоящий момент началась пятилетняя исследовательская программа, задачей которой будет определение уровня воздействия космоса на ускорение развития у космонавтов атеросклероза (болезнь кровеносных сосудов).

Недостаток сна и использование снотворных

Десятилетнее исследование показало, что последние недели перед запуском и во время начала космических миссий астронавты явно недосыпают. Среди опрошенных три из четырех признавались, что употребляли медицинские средства, которые помогали им уснуть, даже невзирая на то, что употребление подобных медикаментов могло быть опасным во время управления космическим аппаратом и при работе с другим оборудованием. Опаснее всего ситуация в таком случае могла бы оказаться тогда, когда астронавты принимали одно и то же лекарство и в одно и то же время. В таком случае в момент возникшей чрезвычайной ситуации, требующей экстренного решения, они могли бы ее просто проспать.

Несмотря на то, что NASA приписало каждому астронавту спать как минимум восемь с половиной часов в день, большинство из них каждодневно отдыхали всего около шести часов во время выполнения миссий. Серьезность такой нагрузки на организм усугублялась еще и тем, что в течение последних трех месяцев тренировок перед полетом люди ежедневно спали менее шести с половиной часов.

«Будущие миссии на Луну, Марс и дальше потребуют разработки более эффективных мер для решения вопросов нехватки сна и оптимизации производительности человека во время космического полета», - говорит старший исследователь данного вопроса доктор Чарльз Кзейлер.

«Эти меры могут включать изменения графика работ, которые будут выполняться с учетом воздействия на человека определенных световых волн, а также изменения в поведенческой стратегии экипажа для более комфортного входа в состояние сна, которое обязательно необходимо для восстановления здоровья, сил и хорошего настроения на следующий день».

Потеря слуха

Исследования показали, что еще со времен миссий космических шаттлов у некоторых астронавтов отмечались случаи временной значительной и менее значительной потери слуха. Отмечались они чаще всего при воздействии на людей высоких звуковых частот. У членов экипажа советской космической станции «Салют-7» и российского «Мира» также регистрировались незначительные или весьма значительные эффекты снижения слуха после возвращения на Землю. Опять же во всех этих случаях причиной частичной или полной временной потери слуха являлось воздействие высоких звуковых частот.

Экипажу Международной космической станции предписано каждодневное ношение беруш. Для снижения шума на борту МКС, помимо прочих мер, было предложено использование специальных звукоизоляционных прокладок внутри стен станции, а также установка более тихих вентиляторов.

Однако, помимо шумного фона, на потерю слуха могут влиять и другие факторы: например, состояние атмосферы внутри станции, повышение внутричерепного давления, а также повышенный уровень углекислого газа внутри станции.

В 2015 году NASA, с помощью экипажа МКС начал изучение возможных способов избегания эффектов потери слуха во время годичных миссий. Ученые хотят посмотреть, насколько долго можно избегать подобных эффектов, и выяснить приемлемый риск, связанный с потерей слуха. Ключевой задачей эксперимента будет определение того, как минимизировать потерю слуха полностью, а не только во время конкретно взятой космической миссии.

Камни в почках

У каждого десятого человека на Земле рано или поздно проявляется проблема камней в почках. Однако данный вопрос становится гораздо острее, когда речь заходит об астронавтах, потому как в условиях космоса кости организма начинают терять полезные вещества еще быстрее, чем на Земле. Внутрь организма выделяются соли (фосфат кальция), которые проникают через кровь и накапливаются в почках. Эти соли могут утрамбовываться и обретать форму камней. При этом размер этих камней может варьироваться от микроскопического до вполне себе серьезного - вплоть до размера с грецкий орех. Проблема заключается в том, что эти камни могут блокировать сосуды и другие потоки, которые питают орган или выводят из почек лишние вещества.

Для астронавтов риск развития почечных каменей опаснее тем, что в условия микрогравитации может снижаться объем крови внутри организма. Кроме того, многие астронавты не пьют по 2 литра жидкостей в день, которые, в свою очередь, могли бы обеспечить полную гидратацию их организма и не позволять камням застаиваться в почках, выводя их частички вместе с мочой.

Отмечается, что как минимум у 14 американских астронавтов развилась проблема с камнями в почках практически разу же после завершения их космических миссий. В 1982 году был зафиксирован случай острой боли у члена экипажа на борту советской станции «Салют-7». Космонавт в течение двух дней мучился от сильнейших болей, в то время как его товарищу ничего не оставалось, как беспомощно наблюдать за страданиями своего коллеги. Сначала все подумали на острый аппендицит, однако через время вместе с мочой у космонавта вышел небольшой почечный камень.

Ученые весьма долгое время разрабатывали специальную ультразвуковую машину размером с настольный компьютер, которая позволяет обнаруживать камни в почках и выводить их с помощью импульсов звуковых волн. Думается, на борту корабля, следующего к Марсу, такая штука могла бы определенно пригодиться.

Заболевания легких

Несмотря на то, что мы пока с точностью не знаем, какие негативные эффекты для здоровья может вызывать пыль с других планет или астероидов, ученым все же известны некоторые весьма неприятные последствия, которые могут проявляться в результате воздействия лунной пыли.

Самый серьезный эффект вдыхания пыли, вероятнее всего, отразится на легких. Однако невероятно острые частицы лунной пыли могут нанести серьезные повреждения не только легким, но и сердцу, заодно вызвав целый букет различных недугов, начиная от сильнейшего воспаления органов и заканчивая раком. Аналогичные эффекты может вызывать, например, асбест.

Острые частицы пыли могут нанести вред не только внутренним органам, но и вызывать воспаление и ссадины на коже. Для защиты необходимо использование специальных многослойных кевлароподобых материалов. Лунная пыль может с легкостью повредить роговицы глаз, что в свою очередь может оказаться наиболее серьезной экстренной ситуацией для человека в космосе.

Ученые с сожалением отмечают, что неспособны смоделировать лунный грунт и провести полный набор тестов, необходимых для определения воздействия лунной пыли на организм. Одна из сложностей в решении этой задачи заключается в том, что на Земле частицы пыли не находятся в вакууме и не подвергаются постоянному воздействию радиации. Лишь дополнительные исследования пыли непосредственно на поверхности самой Луны, а не в лаборатории, смогут обеспечить ученых необходимыми данными для разработки эффективных методов защиты от этих крошечных токсичных убийц.

Сбой иммунной системы

Наша иммунная система меняется и отвечает на любые, даже самые малейшие изменения в нашем организме. Недостаток сна, недостаточный прием питательных веществ или даже обычный стресс - все это ослабляет нашу иммунную систему. Но это на Земле. Изменение же иммунной системы в космосе может в конечном итоге обернуться обычной простудой либо нести потенциальную опасность в развитии куда более серьезных заболеваний.
В космосе распределение иммунных клеток в организме изменяется не сильно. Куда большую угрозу для здоровья могут повлечь за собой изменения в функционировании этих клеток. Когда функционирование клетки снижается, уже подавленные вирусы, находящиеся в человеческом организме, могут заново пробудиться. И сделать это фактически скрытно, без проявления симптомов болезни. При повышении активности иммунных клеток иммунная система слишком остро реагирует на раздражители, вызывая аллергические реакции и другие побочные эффекты вроде сыпи на коже.

«Такие вещи, как радиация, микробы, стресс, микрогравитация, нарушение сна и даже изоляция - все они могут повлиять на изменение работы иммунной системы членов экипажа», - говорит иммунолог NASA Брайан Крушин.

«В рамках долгих космических миссий будет повышаться риск развития инфекций, гиперчувствительности, а также аутоиммунных проблем у астронавтов».

Для решения проблем с иммунной системой NASA планирует использовать новые методы антирадиационной защиты, новый подход к сбалансированному питанию и лекарствам.

Радиационные угрозы

Нынешнее очень необычное и весьма продолжительное отсутствие солнечной активности может способствовать опасным изменениям уровня радиации в космосе. Ничего подобного не происходило почти в течение последних 100 лет.

«Несмотря на то, что подобные события необязательно являются останавливающим фактором для долгих миссий к Луне, астероидам и даже к Марсу, галактическая космическая радиация сама по себе является тем фактором, который может ограничить запланированное время проведения этих миссий», - говорит Нэйтан Швадрон из Института земных, океанических и космических исследований.

Последствия такого рода воздействия могут быть самыми разными, начиная от лучевой болезни и заканчивая развитием рака или поражением внутренних органов. Кроме того, опасные уровни радиационного фона сокращают эффективность антирадиационной защиты космического корабля примерно на 20 процентов.

В рамках всего лишь одной миссии на Марс астронавт может подвергнуться 2/3 той безопасной дозы излучения, которой человек может подвергнуться в худшем случае в течение всей своей жизни. Это излучение может вызвать изменения в ДНК и увеличить риск развития рака.

«Если говорить о накопительной дозе, то это тоже самое, что проводить полное КТ-сканирование организма каждые 5-6 дней», - говорит ученый Кэри Цейтлин.

Когнитивные проблемы

При симуляции состояния нахождения в космосе ученые обнаружили, что воздействие высоко заряженных частиц даже в малых дозах заставляет лабораторных крыс реагировать на окружение гораздо медленнее, и при этом грызуны становятся более раздражительными. Наблюдение за крысами также показало изменение в составе белка в их мозге.

Однако ученые спешат отметить, что не на всех крысах проявлялись одинаковые эффекты. Если это правило действительно и в случае с астронавтами, то, по мнению исследователей, они смогли бы определить биологический маркер, указывающий и предсказывающий скорое проявление этих эффектов у астронавтов. Возможно, этот маркер даже позволил бы найти способ снизить негативные последствия от воздействия радиации.

Более серьезную проблему представляет болезнь Альцгеймера.

«Воздействие уровня радиации, эквивалентного тому, которое придется испытать человеку во время полета на Марс, может способствовать развитию когнитивных проблем и ускорять изменения в работе мозга, которые чаще всего ассоциируют с болезнью Альцгеймера», - говорит невролог Керри О’Бэнион.

«Чем дольше находишься в космосе, тем больше риск развития заболевания».

Один из утешительных фактов заключается в том, что ученые уже успели исследовать один из самых неудачных сценариев воздействия излучения. Они за один раз подвергли лабораторных мышей такому уровню излучения, которое являлось бы характерным для всего времени в рамках миссии на Марс. В свою очередь, люди при полете на Марс будут подвергаться излучению дозированно, в течение трех лет полета. Ученые считают, что человеческий организм может адаптироваться к таким небольшим дозам.

Помимо этого, отмечается, что пластик и легковесные материалы могут обеспечить людям более эффективную защиту от излучения, по сравнению с используемым сейчас алюминием.

Потеря зрения

У некоторых астронавтов отмечается развитие серьезных проблем со зрением после пребывания в космосе. Чем дольше длится космическая миссия, тем вероятнее шанс подобных печальных последствий.

По крайней мере среди 300 американских астронавтов, проходивших медицинскую проверку с 1989 года, проблемы со зрением наблюдались у 29 процентов людей, находившихся в космосе в течение двухнедельных космических миссий, и у 60 процентов людей, которые в течение нескольких месяцев работали на борту Международной космической станции.

Врачи из Техасского университета провели сканирование мозга у 27 астронавтов, проведших в космосе более месяца. У 25 процентов из них наблюдалось уменьшение объема передне-задней оси одного или сразу двух глазных яблок. Такое изменение приводит к дальнозоркости зрения. Опять же отмечалось, чем дольше человек находится в космосе, тем вероятнее данное изменение.

Ученые считают, что объясняться этот негативный эффект может подъемом жидкости к голове в условиях мигрогравитации. В данном случае в черепной коробке начинает накапливаться цереброспинальная жидкость, повышается внутричерепное давление. Просачиваться сквозь кость жидкость не может, поэтому начинает создавать давление на внутреннюю часть глаз. Исследователи пока не уверены, будет ли уменьшаться данный эффект у астронавтов, прибывающих в космосе более шести месяцев. Однако вполне очевидно, что выяснить это будет нужно до того момента, как засылать людей на Марс.

Если проблема вызвана исключительно внутричерепным давлением, то одним из возможных вариантов ее решения будет создание условий искусственной гравитации, каждый день по восемь часов, во время сна астронавтов. Однако говорить о том, поможет ли данный метод или нет - пока рано.

«Эта проблема требует решения, потому что в противном случае она может оказаться главной причиной невозможности длительных космических путешествий», - говорит ученый Марк Шелхамер.

Медицинские исследования костей проведены в космосе

В 2011 году с Байконура в МСК стартовал второй российский цифровой корабль "Союз" с интернациональным экипажем МКС-28/29 в составе россиянина Сергея Волкова, астронавта японского космического агентства Сатоси Фурукава и астронавта НАСА Майкла Фоссума. В программу пребывания в космосе были включены медицинские исследования. Известно, что для проведения экспериментов, в числе которых опыты по изучению воздействия космической радиации на организмы, космонавты доставят на орбиту фрагменты человеческих костей для проведения изысканий. Цель научной работы - выяснить причину и отследить динамику процесса вымывания кальция из костной ткани. С данной проблемой сталкиваются все специалисты, работающие в космосе. Врачи не могли детально изучить эту проблему, ведь они не в состоянии брать на анализ фрагменты костей живых космонавтов, вернувшихся с МКС. Поэтому в арсенале медиков был лишь анализ мочи, который не дает возможность широко посмотреть на данный вопрос.

Также известно, что космонавт Волков вывел на орбиту новые штаммы бактерий. В его пенале содержатся различные виды клеток растений для проведения биотехнологического эксперимента "Женьшень-2". Ученые планируют использовать их биомассу для приготовления медицинских препаратов и в косметологии.

Волков принял участие и в эксперименте "Матрешка", направленном на определение степени воздействия космической радиации на критически важные органы человека. Это позволило создать эффективные способы защиты. В частности, продолжить испытания так называемой защитной шторки. Согласно информации, в зависимости от удаленности шторки от внешней стенки станции доза радиации уменьшается на 20-60%.

Заключение.

Достижения в области космической биологии и медицины внесли существенный вклад в решение проблем общей биологии и медицины. Расширились представления о границах жизни в пределах биосферы, а созданные экспериментальные модели искусственных биогеоценозов - относительно замкнутым круговоротом веществ позволили дать определенную количественную оценку антропогенных воздействий на биосферу. Большое влияние космическая биология оказала на экологию, в первую очередь экологию человека и изучение взаимосвязи процессов жизнедеятельности с абиотическими факторами окружающей среды. Проведенные исследования позволили лучше познать биологию человека и животных, механизмы регуляции и функционирования многих систем организма.

Исследования в области космической биологии и медицины будут и впредь особенно нужны для решения ряда вопросов, в частности для биологической разведки новых космических трасс. Чрезвычайно важную роль космическая биология и медицины сыграет и в разработке необходимых для длительных полётов биокомплексов, или замкнутых экологических систем. Космос в настоящее время становится ареной международного сотрудничества. Подписано в 1972 году соглашение между правительствами СССР и США о сотрудничестве в исследовании и использовании космического пространства в мирных целях, предусматривает, в частности, сотрудничество в области космической биологии.

Таким образом, в ближайшие десятилетия будет реализован ряд сложных космических программ, направленных на улучшение жизни в космосе и на Земле. Станут серьезнее требования сохранения здоровья космонавтов, обеспечения эффективной профессиональной деятельности и высокой работоспособности космонавтов, обусловленные увеличением длительности космических экспедиций, объема вне корабельной деятельности и монтажных работ, усложнением исследовательской деятельности. При осуществлении экспедиций на Луну и, особенно, на Марс, значительно возрастет риск по сравнению с пребыванием на околоземных орбитах. Поэтому многие медико-биологические проблемы будут решаться с учетом новых реалий. Приоритетное развитие "наук о жизни" позволит не только обеспечить успешное решение перспективных задач, стоящих перед космонавтикой, но и внесет неоценимый вклад в земное здравоохранение, на благо каждого человека .

Список использованной литературы:

1.Большая Детская Энциклопедия Вселенная: Научно-популярное издание. - Русское энциклопедическое товарищество, 1999.

2. Большая энциклопедия Вселенная. - М. : Изд-во «Астрель», 1999.

3.Сайт http://spacembi.nm.ru/

4. Энциклопедия Вселенная (“РОСМЭН”)

5. Сайт Wikipedia (картинки)

6.Космос на рубеже тысячелетий. Документы и материалы. М., Международные отношения (2000г.)

7. Циолковский К. Э., Путь к звёздам, М., 1960;

8.Газенко О. Г., Некоторые проблемы космической биологии, «Вестник АН СССР», 1962, №1;

9. Газенко О. Г., Космическая биология, в кн.: Развитие биологии в СССР, М., 1967; Газенко О. Г., Парфенов Г. П., Результаты и перспективы исследований в области космической генетики, «Космическая биология и медицина».

Содержание.

1. Введение

2. Начало. медико-биологических исследований в середине XX века.

Животные, проложившие путь человеку в космос.

3. Этапы биологических исследований.

4. Перспективы развития исследований.

10 медицинских проблем, способных помешать исследованию дальнего космоса

5. Заключение

6. Список использованных источников.

Космическая биология и медицина, как и космонавтика вообще, могла появиться лишь тогда, когда научный и экономический потенциал страны достиг мировых вершин.

Один из ведущих специалистов в космической биологии и медицине — академик Олег Георгиевич Газенко. В 1956 году его включили в группу ученых, которым было поручено медицинское обеспечение будущих космических полетов. С 1969 года Олег Георгиевич возглавляет Институт медико-биологических проблем Министерства здравоохранения СССР.

О. Газенко рассказывает о развитии космической биологии и космической медицины, о проблемах, которые решают ее специалисты.

Космическая медицина

Иногда спрашивают: с чего началась космическая биология и космическая медицина? И в ответ можно порой услышать и прочитать, что начиналась она с опасений, с вопросов типа: сможет ли человек в невесомости дышать, есть, спать и т. д.?

Конечно, эти вопросы возникали. Но все- таки дело обстояло иначе, чем, скажем, в эпоху великих географических открытий, когда мореплаватели и путешественники отправлялись в путь, не имея ни малейшего представления о том, что их ждет. Мы же в основном знали, что ждет человека в космосе, и это знание было достаточно обоснованным.

Космическая биология и космическая медицина начинались не на пустом месте. Они выросли из общей биологии, вобрали в себя опыт экологии, климатологии и других дисциплин, в том числе и технических. Теоретический анализ, который предшествовал полету Юрия Гагарина, основывался на данных авиационной, морской, подводной медицины. Имелись и экспериментальные данные.

Еще в 1934 году, сначала у нас и чуть позже в США, были предприняты попытки исследовать влияния верхних слоев атмосферы на живые организмы, в частности, на механизм наследственности мух-дрозофил. К 1949 году относятся первые полеты животных — мышей, кроликов, собак — на геофизических ракетах. В этих опытах исследовалось влияние на живой организм не только условий верхней атмосферы, но и самого полета на ракете.

Рождение науки

Всегда трудно определить дату рождения какой-либо науки: вчера, мол, ее еще не было, а сегодня появилась. Но вместе с тем в истории любой отрасли знания есть событие, знаменующее ее становление.

И как, скажем, работы Галилея можно считать началом экспериментальной физики, так и орбитальные полеты животных ознаменовали рождение космической биологии — все, вероятно, помнят собаку Лайку, отправленную в космос на втором советском искусственном спутнике Земли в 1957 году.

Потом была организована еще серия биологических испытаний на кораблях-спутниках, давшая возможность исследовать реакцию животных на условия космического полета, наблюдать за ними после полета, изучать отдаленные генетические последствия.

Итак, к весне 1961 года мы знали, что человек сможет совершить космический полет — предварительный анализ показывал, что все должно быть благополучно. И, тем не менее, поскольку речь шла о человеке, всем хотелось иметь известные гарантии на случай непредвиденных обстоятельств.

Поэтому первые полеты готовились с подстраховкой и даже, если угодно, с перестраховкой. И здесь просто нельзя не вспомнить Сергея Павловича Королева. Можно представить себе, сколько дел и забот было у Главного конструктора, готовящего первый полет человека в космос.

И, тем не менее, он вникал во все детали медико-биологической службы полета, заботясь о максимальной ее надежности. Так, Юрию Алексеевичу Гагарину, полет которого должен был длиться полтора часа и который вообще мог обойтись без еды и воды, дали пищи и других необходимых запасов на несколько суток. И правильно поступили.

Причина тут в том, что нам тогда просто недоставало информации. Знали, например, что в невесомости могут возникнуть расстройства вестибулярного аппарата, но такими ли они будут, как мы их представляем, было неясно.

Другой пример — космическая радиация. Знали, что она существует, но насколько она опасна, определить на первых порах было трудно. В тот начальный период изучение самого космического пространства и освоение его человеком шли параллельно: еще не все свойства космоса были изучены, а полеты уже начались.

Поэтому и защита от радиации на кораблях была мощнее, чем требовали реальные условия. Тут мне хочется подчеркнуть, что научные работы в космической биологии с самого начала были поставлены на солидную, академическую основу, подход к разработке этих, казалось бы, прикладных проблем был весьма фундаментальным.

Развитие космической биологии

Академик В. А. Энгельгардт, будучи в то время академиком-секретарем отделения общей биологии АН СССР, много сил и внимания уделил тому, чтобы дать космической биологии и космической медицине хороший старт.

Много помогал расширению исследований и созданию новых коллективов и лабораторий академик Н. М. Сисакян: по его инициативе уже в начале 60-х годов 14 лабораторий различных академических институтов вели работу в области космической биологии и космической медицины, в них были сосредоточены сильные научные кадры.

Большой вклад внес в развитие космической биологии и космической медицины академик В. Н. Черниговский. Как вице-президент Академии медицинских наук СССР, он привлекал к разработке этих проблем многих ученых своей академии.

Непосредственными руководителями первых экспериментов по космической биологии были академик В. В. Парин, который специально исследовал проблемы космической физиологии, и профессор В. И. Яздовский. Необходимо вспомнить и первого директора Института медико-биологических проблем профессора А. В. Лебединского.

С самого начала дело возглавили крупные ученые, и это обеспечило и хорошую постановку исследований и — как следствие — глубину и точность теоретического предвидения, которое прекрасно подтвердила практика космических полетов.

Три из них следует отметить особо.

— Это биологический эксперимент на втором искусственном спутнике, показавший, что живое существо в космическом летательном аппарате может без вреда для себя находиться в космическом пространстве.

— Это полет Юрия Гагарина, показавший, что космос не оказывает негативного влияния на эмоционально-психическую сферу человека (а такие опасения были), что человек, как и на Земле, может мыслить и работать в космическом полете.

— И, наконец, это выход в открытый космос Алексея Леонова: человек в специальном скафандре находился и работал вне корабля и — главное, что интересовало ученых,- уверенно ориентировался в пространстве.

В этот ряд следует поставить и высадку американских астронавтов на поверхность Луны. Программа «Аполлон» также подтвердила некоторые положения, теоретически разработанные на Земле.

Подтвердился, например, характер движений человека на Луне, где сила тяготения значительно меньше, чем на Земле. Практика подтвердила и теоретический вывод о том, что быстрый пролет через радиационные пояса, окружающие Землю, неопасен для человека.

Под словом «практика» я имею в виду не только полеты людей. Им предшествовали полеты наших автоматических станций типа «Луна» и «Зонд» и американских «Сервейеров», которые основательно разведали обстановку и на трассе и на самой Луне.

На «Зондах», кстати, Луну облетели живые существа и благополучно возвратились на Землю. Так что полет людей на наше ночное светило был подготовлен очень фундаментально.

Как видно из приведенных примеров, самой характерной чертой первого периода космической биологии был поиск ответов на принципиальные вопросы. Сегодня, когда эти ответы, причем довольно подробные, в основном получены, поиск ушел как бы вглубь.

Цена полета в космос

Современный этап характерен более тщательным и тонким изучением глубинных, фундаментальных биологических, биофизических, биохимических процессов, идущих в живом организме в условиях космического полета. И не просто изучением, но и попытками управлять этими процессами.

Чем это объяснить?

Полет человека в космос на ракетном аппарате небезразличен для состояния организма. Конечно, его приспособительные возможности необычайно велики и пластичны, но не беспредельны.

Притом за всякое приспособление всегда надо чем-то платить. Скажем, самочувствие в полете стабилизируется, но эффективность работы снизится.

Приспособишься в невесомости к «легкости необыкновенной», но потеряешь силу мышц и крепость костей… Эти примеры лежат на поверхности. Но, очевидно, и глубинные жизненные процессы подчиняются этому закону (и тому есть подтверждения). Их приспособление не столь заметно, в кратковременных полетах может вообще не проявиться, но ведь полеты становятся все длительнее.

Какова же плата за такое приспособление? Можно с ней согласиться или она нежелательна? Известно, например, что в крови космонавтов во время полета уменьшается число эритроцитов — красных кровяных телец, переносящих кислород. Уменьшение незначительное, неопасное, но это в недолгом полете. А как этот процесс пойдет в полете длительном?

Все это необходимо знать, чтобы построить профилактическую защитную систему и тем расширить возможности человека жить и работать в космосе. И не только для космонавтов — специально отобранных и подготовленных людей, но и для ученых, инженеров, рабочих, может быть, деятелей искусств.

Происходит углубление самого понятия «космическая медицина и биология». По замыслу, это прикладная наука, вырабатывающая на основе данных общей биологии свои рекомендации, свои методы и приемы поведения человека в космосе. Поначалу так оно и было. Но теперь стало ясно, что космическая биология и космическая медицина не производное от общей биологии, а вся биология в целом, только изучающая организмы в особых условиях существования.

Взаимные интересы науки

Ведь все, что делает человек на Земле, он начинает делать и в космосе: ест, спит, работает, отдыхает, в очень далеких полетах люди будут рождаться и умирать — словом, человек начинает в полном биологическом смысле жить в космосе. И поэтому мы теперь не найдем, наверное, ни одного раздела биологических и медицинских знаний, которые были бы нам безразличны.

Вследствие этого возрос масштаб исследований: если в первых шагах космической биологии и космической медицины принимал участие буквально десяток ученых, то сейчас на ее орбиту вышли уже сотни учреждений и тысячи специалистов самого различного и подчас неожиданного, на первый взгляд, профиля.

Вот пример: Институт трансплантации органов и тканей, которым руководит известный хирург профессор В. И. Шумаков. Казалось бы, что может быть общего между изучением здорового организма в особых условиях космического полета и такой крайней мерой спасения безнадежных больных, как пересадка органов? Но общее есть.

Область взаимных интересов относится к проблемам иммунитета — природной защиты организма от воздействия бактерий, микробов и других чужеродных тел. Установлено, что в условиях космического полета иммунологическая защита организма слабеет. Тому есть ряд причин, одна из них заключается в следующем.

В обычной жизни мы везде и всегда встречаемся с микробами. В замкнутом пространстве космического корабля атмосфера почти стерильна, микрофлора значительно беднее. Иммунитет становится практически «безработным» и «теряет форму», как теряет ее спортсмен, если долго не тренируется.

Но и при пересадке органов, чтобы организм не отторгнул их, приходится уже искусственно снижать уровень действия иммунитета. Вот тут и возникают наши общие вопросы: как ведет себя организм в этих условиях, как уберечь его от инфекционных заболеваний?..

Есть и другая область взаимных интересов. Мы полагаем, что со временем люди будут очень долго летать и жить в космосе. Значит, могут и заболеть. Поэтому возникает необходимость, во-первых, представить себе, какие это могут быть заболевания, а во-вторых, обеспечить людей в полете диагностической аппаратурой и, конечно, средствами лечения.

Это могут быть лекарства, но может быть и искусственная почка — нельзя исключить вероятность того, что в дальних экспедициях понадобятся и такие средства. Вот и думаем вместе со специалистами Института трансплантации органов и тканей над тем, как снабдить участников будущих космических экспедиций «запчастями» и какова должна быть «технология ремонта».

Впрочем, операция в космосе — это, конечно, крайний случай. Основную роль будет играть профилактика, предупреждение заболеваний. И тут не последнюю роль может сыграть питание как средство управления обменом веществ и его изменениями, если они возникнут, а также как средство снижения нервно-эмоционального напряжения.

Определенным образом составленная диета с включением в пищу соответствующих препаратов сделает свое дело незаметно для человека, процедура не будет носить характера приема лекарства. Соответствующие исследования мы проводили в течение ряда лет с Институтом питания АМН СССР под руководством академика АМН СССР А. А. Покровского.

Еще пример: Центральный институт травматологии и ортопедии имени Н. Н. Приорова (ЦИТО), который возглавляет академик АМН СССР М. В. Волков. Сфера интересов института — костно-опорный аппарат человека. Причем исследуются не только методы лечения переломов и ушибов, способы протезирования, но и всякого рода изменения костной ткани.

Последнее интересует и нас, ибо в космосе тоже происходят определенные изменения костной ткани. Методы же воздействия на эти процессы, применяемые и в космосе и в клинике, в основе — своей очень близки.

Распространенная в наше время гипокинезия — малая подвижность — в еще большей степени проявляется в космосе. Состояние человека, вставшего с постели после двухмесячной болезни, сравнимо с состоянием космонавта, вернувшегося из полета: обоим надо заново учиться ходить по земле.

Дело в том, что в невесомости часть крови перемещается из нижней части тела в верхнюю, приливает к голове. Кроме того, мышцы, не получая привычной нагрузки, слабеют. Примерно тоже самое происходит при долгом лежании в постели. Когда же человек возвращается на Землю (или встает после долгой болезни), происходит обратный процесс — кровь быстро оттекает сверху вниз, что сопровождается головокружениями и может даже вызвать обморок.

Чтобы избежать подобных явлений, космонавты в полете нагружают мышцы на специальном тренажере, используют так называемую вакуумную систему, которая способствует перемещению части крови в нижнюю половину тела. Вернувшись же из полета, они носят некоторое время послеполетные профилактические костюмы, которые, наоборот, препятствуют быстрому оттоку крови из верхней половины тела.

Теперь подобные средства используются и в лечебных учреждениях. В ЦИТО тренажеры типа космических позволяют больным «гулять», не вставая с постели. А послеполетные костюмы с успехом прошли испытание в Институте хирургии имени А. В. Вишневского — с их помощью пациенты быстрее встают на ноги в буквальном смысле.

Перераспределение крови в организме не просто механический процесс, оно влияет и на физиологические функции и поэтому представляет немалый интерес как для космической биологии и медицины, так и для клинической кардиологии. Тем более что вопросы регуляции кровообращения при изменении пространственного положения тела недостаточно еще исследованы на здоровых людях.

И вот в совместных исследованиях с Институтом кардиологии имени А. Л. Мясникова и Институтом трансплантации органов и тканей мы получили первые интересные данные о том, например, как меняется давление в различных сосудах и полостях сердца при изменении положения тела в пространстве. О том, как и в каком темпе меняется при физической нагрузке биохимический состав крови, оттекающей от мозга, или от печени, или от мышц, то есть отдельно от каждого органа.

Это дает возможность более глубоко судить о его работе и состоянии. Исследования, о которых идет речь, необычайно обогащают наши знания физиологии и биохимии человека, это пример фундаментального изучения биологической сущности человека. И пример не единственный.

Я уже упоминал, что в космосе у человека уменьшается число эритроцитов в крови и что важно разобраться в причинах этого явления. Специальные исследования, в частности на спутнике «Космос-782», показали, что в космосе снижается устойчивость (резистентность) этих клеток, и поэтому они разрушаются чаще, чем в нормальных земных условиях, средняя продолжительность жизни их сокращается.

Теперь, естественно, придется выяснять, каким образом можно было бы поддержать устойчивость эритроцитов. Это важно для космоса, но может оказаться полезным и для борьбы с анемией и другими болезнями крови.

Тот факт, что космическая биология участвует в фундаментальных исследованиях человеческого организма, вполне определенным образом характеризует современный этап ее развития, Фундаментальные исследования закладывают основы дальнейшего развития практической деятельности. В нашем случае закладываются основы дальнейшего продвижения человека в космос.

Кто полетит в космос

Уже сейчас потребности исследования космического пространства заставляют ученых думать о расширении состава специалистов, летающих в космос.

В ближайшие годы можно ожидать появления на орбите ученых — исследователей космоса, инженеров — организаторов внеземного производства различных материалов, которые нельзя получить на Земле, рабочих для сборки космических объектов и обслуживания производств и т. д.

Для этих специалистов придется, по-видимому, расширить довольно узкую сейчас «калитку» медицинского отбора, то есть снизить формальные требования к состоянию здоровья, уменьшить объем подготовительных тренировок.

Вместе с тем, разумеется, должна быть гарантирована и полная безопасность и, я бы сказал, безвредность полета для этих людей.

В орбитальном полете это сделать относительно просто: можно не только наладить постоянный контроль за состоянием экипажа, но и, в крайнем случае, всегда есть возможность за несколько часов вернуть человека на Землю. Другое дело — межпланетные полеты, они будут значительно более автономными.

Экспедиция, скажем, на Марс займет 2,5-3 года. Значит, подход к организации таких экспедиций должен быть иным, чем при полетах на орбите. Здесь, очевидно, нельзя снижать требования к здоровью при отборе кандидатов.

Более того, кандидаты, как мне представляется, должны обладать не только отличным здоровьем, но и некоторыми конкретными свойствами — скажем, способностью легко адаптироваться к меняющимся условиям окружающей среды или же определенным характером реакции на экстремальные воздействия.

Очень важна возможность организма приспосабливаться к изменению биологических ритмов. Дело в том, что свойственные нам ритмы имеют сугубо земное происхождение. Например, самый важный из них — суточный — прямо связан со сменой дня и ночи. Но земные сутки существуют только на Земле, на других планетах сутки, естественно, иные, и к ним придется приспосабливаться.

Что делать во время полета

Очень большое значение приобретают вопросы, связанные с моральным климатом, который установится на борту. И дело тут не только в личных качествах людей, но и в организации их работы, быта — вообще жизни, с учетом потребностей, в том числе и эстетических, каждого члена экипажа. Этот круг вопросов, пожалуй, наиболее сложный.

Например, проблема свободного времени. Считают, что во время перелета к тому же Марсу рабочая нагрузка на каждого члена экипажа составит не более 4 часов в сутки. Отведем 8 часов на сон, останется 12. Чем их занять? В ограниченном пространстве космического корабля, при неизменном составе экипажа сделать это не так просто. Книги? Музыка? Фильмы? Да, но не любые. Музыка, даже любимая, может вызвать излишнее эмоциональное возбуждение, усилить чувство отрыва от дома.

Книги и фильмы драматичного или трагедийного плана тоже способны вызвать негативные реакции, а вот жанр приключений, фантастики, книги путешественников, полярников, спелеологов, в которых есть материал для сравнения, сопереживания, будут, бесспорно, восприняты хорошо. Решать кроссворды, ребусы можно, а играть в шахматы или шашки едва ли будет рекомендовано, ибо в таких играх есть элемент соперничества, нежелательный в подобной ситуации.

Все эти соображения возникли в результате уже ведущихся исследований. Они, на мой взгляд, весьма стимулируют пристальное изучение психологии человека, и я думаю, что со временем, когда названные проблемы будут достаточно разработаны, они принесут большую пользу и земной практике — в организации труда и отдыха людей.

Жизнеобеспечение экспедиций

Особое место в разработке межпланетных полетов занимает жизнеобеспечение экспедиций. Сейчас космонавты все, что им нужно в полете, просто берут с Земли (лишь частично регенерируется атмосфера; в некоторых полетах проводили экспериментальную регенерацию воды).

Но на три года запасов с собой не возьмешь. На межпланетном корабле предстоит создать замкнутую экологическую систему, наподобие земной, но в миниатюре, которая будет снабжать экипаж пищей, водой, свежим воздухом и утилизировать отходы жизнедеятельности.

Задача невероятно сложная! По существу, речь идет о конкуренции с природой: то, что она создавала многие миллионы лет на всей планете, люди пытаются воспроизвести в лаборатории, чтобы потом перенести в космический корабль.

Такие работы ведутся уже много лет в нашем институте, в Красноярском институте физики имени Л. В. Киренского. Кое- что уже сделано, но все-таки еще нельзя говорить о больших здесь успехах. Многие специалисты вообще полагают, что реальный практический успех, может быть, достигнут лишь лет через 15-20. Возможно, конечно, и раньше, но ненамного.

Генетика

Наконец, проблемы генетики, воспроизводства потомства. В нашем институте совместно с МГУ и Институтом биологии развития АН СССР ведутся исследования, цель которых определить влияние невесомости на эмбриогенез и морфогенез.

Эксперименты, в частности на спутнике «Космос-782», показали, что насекомым (дрозофилам) невесомость не мешает давать нормальное потомство, а у более сложных организмов — рыб, лягушек — в ряде случаев были обнаружены нарушения, отклонения от нормы. Это говорит о том, что им для нормального развития на самых первых этапах жизни зародыша нужна сила земного тяготения, и, стало быть, эту силу следует создавать искусственно.

Проблематика длительных космических полетов

Итак, проблематика длительных космических полетов — самое существенное в нашей сегодняшней работе. И тут правомерен вопрос: а насколько длительным может быть пребывание человека в космосе? Точно сейчас ответить нельзя. В организме во время полета происходит ряд процессов, которыми пока не удается управлять. Они не изучены до конца, человек ведь еще не летал долее трех месяцев, и мы не знаем, как пойдут эти процессы при более продолжительных сроках полета.

Необходима объективная, экспериментальная проверка, и вопрос о возможности, скажем, трехлетнего пребывания человека в космосе должен быть решен на околоземной орбите. Только тогда у нас появится гарантия, что такая экспедиция пройдет благополучно.

Но я думаю, что человек не встретит на этом пути неодолимых препятствий. Такой вывод можно сделать на основе уже сегодняшних знаний. Ведь космическая эра человечества только началась, и, образно говоря, мы сейчас только собираемся в ту дальнюю дорогу, которая предстоит человечеству в космосе.

Загрузка...