decorininterior.ru

Электрические регуляторы мощности до 2 квт. Принцип работы симисторных регуляторов мощности

Если в жилье есть газоснабжение, готовить пищу на газовой плите удобнее, а отопление газовым котлом обычно дешевле электрического варианта. Но при отсутствии газа оптимизация потребления электроэнергии становится очень важной задачей. Для ее решения надо потреблять ровно столько электрической энергии, сколько необходимо. А для этого потребуется оптимальное управление бытовыми электроприборами и освещением. Многие электроплиты, электрообогреватели, вентиляторы и т.д. снабжены встроенными регуляторами.

Но технические возможности системы управления электрооборудованием стоят немалых денег. И по этой причине чаще всего покупаются недорогие электроприборы с простейшими регуляторами. Далее мы расскажем читателям об устройствах, использование которых даст не только экономию электроэнергии, но и сделает многие электроприборы более удобными. Эти устройства - регуляторы мощности. Их назначение - регулировка среднего значения напряжения на нагрузке.

Проще всего купить диммер

Они уменьшают его величину, а соответственно, и потребляемую мощность. По законам Джоуля-Ленца и Ома для электрической цепи. Эффективное регулирование мощности нагрузки обеспечивают специальные технические решения. А любая схема регулятора мощности содержит полупроводниковый коммутатор. Кто желает поскорее обрести возможность гибкого управления своими электроприборами, может легко купить простой регулятор мощности. Им является диммер. Разнообразные модели этого устройства продаются в торговых сетях.

Очень удобен такой регулятор на даче. Он будет замечательным дополнением к маленькому кипятильнику или одно-, двухконфорочной электроплитке. Теперь в ходе приготовления еды не будет подгорания и слишком сильного кипения. Покупая регулятор мощности, обязательно удостоверьтесь в его соответствии решаемым задачам. Он должен быть мощнее управляемого электрооборудования. Большинство моделей диммеров рассчитано на обслуживание квартирного освещения. По этой причине они в основном регулируют мощность до 300 Вт.

Не нашел в магазине - сделай сам

Чтобы приобрести более мощную модель, придется поискать ее в торговых сетях. Альтернативное решение - просмотр схем регуляторов мощности, изготовление своими руками выбранной модели. Чтобы помочь нашим читателям выбрать оптимальную схему, более подробно опишем главные особенности этих устройств. Регулятор на полупроводниковом ключе может быть выполнен на

  • биполярном транзисторе;
  • полевом транзисторе;
  • тиристоре;
  • симметричном тиристоре (симисторе, триаке).

Регулятор мощности, схема которого содержит любой из перечисленных полупроводниковых ключей, всегда пребывает в одном из двух состояний. Он либо максимально ограничивает ток (отключает нагрузку), либо почти не оказывает сопротивления (подключает нагрузку). При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.

Наиболее быстродействующими ключами являются транзисторы. Но они и включаются и выключаются при любой ненулевой величине напряжения. Если эти процессы происходят вблизи его амплитудного значения, динамические потери будут максимально большими. Обычный тиристорный ключ отличается тем, что выключается без управляющего сигнала при переходе тока нагрузки через ноль. Хотя его включение происходит при той же амплитуде переменного напряжения, что и у транзисторов.

Выбери триак

По этой причине схема тиристора, а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные. Поэтому рекомендуем остановиться на симисторах - схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое.

Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.

Современные симисторы в регуляторах

Устаревший дизайн КУ208Г не всегда удобен для размещения в корпусе регулятора. Новая модель BT136 600E, у которой параметры включения и регулировки примерно такие же, позволит собрать более компактный симисторный регулятор мощности. С этой моделью из-за ее компактности получается значительно больше вариантов конструкции, из которых можно выбирать.

Если самостоятельно изготавливается регулятор мощности, схема которого взята из какого-либо источника, обязательно сравните максимальные токи используемого ключа и нагрузки. В этих целях разделите паспортную мощность нагрузки на 220. Для надежной работы регулятора мощности на симисторе и не только полученное значение тока должно составлять 0,7 от номинального значения ключа, используемого в схеме. Поэтому для многих бытовых электроприборов КУ208Г окажется слабоват. Но его можно заменить более мощным, например ВТА 12.

Этот ключ со своими 12 амперами сможет надежно регулировать нагрузку до 1848 Вт с непродолжительным увеличением ее до 2000 Вт. Собранный регулятор мощности на симисторе этой модели, например, можно применить для управления электрическим чайником. Один из таких вариантов показан далее.

При выборе схемы регулятора мощности

  • коллекторного мотора постоянного тока,
  • универсальных (тоже коллекторных) двигателей,
  • пригодного для управления электродвигателя в каком-либо электрооборудовании,

рекомендуем обратить внимание на безопасность управления. Она обеспечивается гальванической развязкой в схеме регулятора. Ключ надежно развязывается от управляющего элемента, к которому прикасается пользователь. Для этого применяются схемотехнические решения с трансформаторами, а также оптронные электронные приборы. Примеры подобных схем показаны далее. В этих схемах управляющий элемент является частью контроллера.

Эффективный, надежный и безопасный регулятор мощности добавит многим вашим электроприборам новые потребительские свойства. За вами остается правильный выбор устройства при покупке или изготовление их без ошибок своими руками по выбранной схеме.


(Вариант 1)

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1.3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 - к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 - СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 - К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2...4,7 мкФ на 63 В, но размеры печатной платы придется увеличить.
Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г - другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150...250, у VT2 - 250...270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50...100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300...600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Симисторный регулятор мощности.
(Вариант 2)

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1.1. Его особенностью является появление высокого уровня (логической "1") на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня ("О") при совладении входных сигналов. В результате этого "Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух "1" (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.
На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ.
При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон - любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68x38 мм.

Простой регулятор мощности.

Регулятор мощности до 1 кВт (0%-100%).
Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения.
Изначально в схеме применялись транзисторы типа МП38 и МП41.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме - родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А!!!
Все резисторы МЛТ 0,125;
R4 - СП3-4аМ;
Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа - К73-17.
При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100
Пробовал управлять ТЭНом 2 квт - никаких морганий света на той же фазе не заметил,
напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора).
Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

Уже скоро как 2 года занимаюсь домашним пивоварением и имеется китайский ТЭН на 3 кВт, который в реале выдает почти 3.5 кВт и ни каждая домашняя электрическая сеть справляется с такой мощностью, да и не всегда нужна такая большая мощность, а что бы снизить мощность ТЭНа нужен диммер.
Раньше у меня был , но он с таким мощным ТЭНом не справляется, перегревается и начинает «вонять», вот по этому стал искать что-то мощнее и нашел на eachbuyer.com.
Пришел диммер достаточно быстро за 20 дней в непривычно серебристом пакете:


Внешний вид диммера и сравнение размеров с картой памяти:


Сразу решил разобрать диммер. Предохранитель это очень хорошо, но вот на плате перемычка меня сначала смутила, а потом смутила еще сильнее, когда посмотрел, что она параллельна предохранителю, спрашивается, зачет тогда он нужен? В общем убрал я эту преремычку… Пайка достаточно не плохая, флюс смыт. Симистор BTA80800В посажен на радиаторе через термопасту, внятное описание в интернете я не нашел, почему-то находится только BTA80-800 (800В на 80 Вт):


Высота радиатора 8 см, что считаю не плохо, а вот то, что у диммера нет закрытого корпуса, это конечно огромный минус, хотя с прямыми руками все это решаемо:


Между платой и основанием корпуса примерно 5 мм:


Вес диммера 177 грамм:

Подключение

С подключением сначала были проблемы, т.к. не понятно куда подавать питание и куда ТЭН подключать, но очень помог смартфон + гугл переводчик, который с помощью камеры перевел иероглифы и вот что получилось:


Подключил питание и ТЭН к диммеру клеммами, надо было еще и термоусадку надеть, но как говорится - «хорошая мысля приходит опосля»…


Такая у меня получилась конструкция:


Пора уже проводить испытания))

Снимать показания буду сетевым ваттметром:


Устанавливаю ручку регулятора (переменный резистор) в крайнее левое положение, ТЭН помещаем в воду, включаем… Ваттметр показал 4.6 Вт, скорее всего это потребление терморегулятором:


Слегка поворачиваю ручку и мощность плавно меняется:


Как видно на фото выше максимальную мощность ТЭН «выжимает» 3.2кВт, а мощность до этого предела можно выставить любого значения…
Что бы убедиться, что ТЭН работает предоставляю фото, на нем видно как ТЭН стал покрываться пузырьками, там выставлена максимальная мощность:


Когда же я ручку регулятора вернул обратно в крайнее левое положение, мощность осталась на уровне 100 Вт:


За время тестирования (около 10 минут) на полной мощности радиатор нагрелся всего до 40 градусов:


Тестировал диммер позже в течении часа, температура у симистора не поднималась выше 60-70 градусов, радиатор прогревался до максимум 50 градусов, что считаю вполне не плохо, а главное запаха гари не было.

Подведу итоги:
+ сомневаюсь, что диммер 9.5 кВт, но доя моих целей (3.5 кВт) подойдет
+ греется не очень сильно
+ можно выставить нужную мощность от 0 до максимального предела ТЭНа
+ хорошая пайка
- непонятно зачем перемычка параллельно подключена к предохранителю
- клеммы можно было написать на английском
- достаточно высокая цена, хотя когда покупал курс доллара был почти на 15 рублей дешевле, по этому цена для меня вполне устроила.

Выводы: хоть и у диммера есть недостатки, все равно он мне понравился, для пивоварения будет очень полезен.

Магазин eachbuyer.com мне нравится, много интересных товаров, бывают хорошие скидки, русскоговорящая поддержка клиентов, быстрая отправка и доставка, а вот цены у них не всегда низкие. А главное курс доллара в магазине чуть больше 41 рубля, по этому рекомендую покупать в рублях.

Спасибо за внимание! По возможности буду отвечать на вопросы.

Планирую купить +33 Добавить в избранное Обзор понравился +26 +53

Применение современной схемотехники с использованием простых оригинальных решений на традиционной элементной базе и на новых малогабаритных микросхемах позволяет изготовить компактные и удобные в эксплуатации регуляторы большой мощности . В данной статье описано несколько простых конструкций регуляторов мощности нагрузки до 5 кВт, которые легко изготовить из доступных деталей.


Электронные регуляторы мощности нагрузки в настоящее время широко используются в промышленности и быту для плавного регулирования скорости вращения электродвигателей , температуры нагревательных приборов, интенсивности освещения помещений электрическими лампами, установки необходимого сварочного тока, регулировки зарядного тока аккумуляторных батарей и т.п. Раньше для этого использовались громоздкие трансформаторы и автотрансформаторы со ступенчатым или плавным переключением витков их обмоток, работающих на нагрузку. Электронные регуляторы более компактны, удобны в эксплуатации и имеют малый вес при значительно большей мощности. В основном, исполнительными элементами электронных регуляторов мощности переменного тока являются: тиристор, симистор и оптотиристор, управление последним осуществляется через встроенную в него оптопару, устраняющую гальваническую связь между схемой управления и питающей электросетью.

Регулирование мощности этими элементами основано на изменении фазы включения симистора в каждой полуволне синусоидального напряжения схемой управления. В результате этого на нагрузке форма напряжения представляет собой «обрезки» полуволн синусоиды с крутыми фронтами (рис.1). При этом форма напряжения на самом регуляторе мощности имеет вид, показанный на рис.2. Такая форма сигнала имеет широкий спектр гармоник, которые, распространяясь по электропроводке, могут создавать помехи электронным устройствам: телевизорам, компьютерам, звуковоспроизводящей аппаратуре и т.п. В связи с этим на сетевых входах таких регуляторов мощности устанавливаются RC- или RLC-фильтры.

Рис.1

На практике все выпускаемые сейчас электронные бытовые устройства и компьютеры имеют свои встроенные сетевые фильтры, благодаря которым помехи регуляторов мощности могут не влиять на работу указанных электронных устройств. Автором проверялись различные регуляторы мощности без собственных сетевых фильтров в комнатах, где установлены телевизор, ком-

Рис.2

пьютер, приемник FM и DVD-проигрыватель с УМЗЧ Воздействия помех на эту аппаратуру не наблюдалось, но это не значит, что фильтры вообще не нужны. Эти регуляторы мощности могут создавать помехи электронной аппаратуре соседей по подъезду. Практические исследования распространения помех по электропроводке в соседних комнатах с помощью осциллографа показали, что при регулировании мощности нагрузки до 2 кВт достаточно RC-фильтра, что подтверждается схемами промышленных изделий. Для регуляторов большей мощности необходимо после RC-фильтра подключить LC-фильтр,

Рис.3

Рис.4

Принципиальная схема сетевого фильтра промышленного регулятора мощности до 4 кВт типа РТ-4 УХЛ4.2 220В-1 Р30 показана на рис.3, монтаж регулятора - на рис.4. Каждая катушка содержит 90 витков провода ПЭВ-2 диаметром 1,5 мм, намотанного в два слоя на каркасе, внутри которого размещен ферритовый сердечник с проницаемостью Ф600 диаметром 8 мм. Индуктивность катушки равна 0,25 мГн. Регуляторы мощности без фильтров могут использоваться в гаражах, индивидуальных подсобных помещениях, дачах и т.п., то есть вдали от соседей. Если регулятор мощности является отдельным изделием и предназначен для подключения нагрузок разной мощности, пользователям важно знать, что при одном и том же положении ручки регулятора на разных нагрузках будет разное напряжение. По этой причине перед подключением нагрузки регулятор мощности необходимо устанавливать в нулевое положение. При необходимости контролировать напряжение на нагрузке можно отдельным или встроенным вольтметром.

В Интернете и электротехнических журналах приведено множество различных схем электронных регуляторов мощности нагрузки с практически одинаковыми функциями, но есть и другие схемные решения, например регуляторы, не создающие помех . Эти регуляторы выдают пачки синусоидальных токов, длительностью которых регулируется мощность в нагрузке. Схемы таких регуляторов относительно сложны и могут применяться в каких-то особых случаях. Применение подобных регуляторов в промышленности не встречалось. Подавляющее большинство регуляторов мощности построены по принципу фазового регулирования тока в нагрузке. Основное различие - схемы управления тиристорами и симисторами. Силовая часть представляет собой практически три варианта: тиристор в диагонали диодного моста, два встречно-параллельных тиристора и симистор. Схемы управления представляют собой различные варианты на транзисторах, микросхемах, динисторах, газоразрядных приборах, однопереходных транзисторах и т.п., часть которых приведена в [ 1-6]. Такие схемы содержат много деталей, относительно сложны в изготовлении и наладке.

Регуляторы на тиристорах

Самым простым и широко используемым регулятором мощности был регулятор на тиристоре, включенном в диагональ диодного моста и с простой схемой управления (рис.5) . Принцип работы этого регулятора очень простой пока конденсатор С2 заряжается через R2 и R4, тиристор заперт, при достижении на С2 напряжения отпирания тиристор открывается и пропускает ток в нагрузку, а С2 быстро разряжается через низкое

Рис.5 регулятор мощности на тиристоре

сопротивление открытого тиристора. При переходе синусоидального напряжения сети через ноль тиристор запирается и ждет нового повышения напряжения на С2 Чем больше времени заряжается С2, тем меньше времени тиристор находится в открытом состоянии и меньше ток в нагрузке. Чем меньше величина R4, тем быстрее заряжается С2 и больше ток пропускается в нагрузку. Достоинством этой схемы является то, что независимо от параметров исправного тиристора положительные и отрицательные импульсы тока в нагрузке всегда симметричны, а также наличие только одного тиристора, которые при их появлении были дефицитом. Недостатком является наличие четырех мощных диодов, что вместе с тиристором и охладителями существенно увеличивает габариты регулятора. Более компактными и в два раза более мощными являются регуляторы мощности на включенных встречно-параллельно тиристорах. На двух тиристорах КУ202Н с простой схемой управления получается регулятор мощности нагрузки до 4 кВт, которая длительно используется автором в калорифере повышенной мощности .

Принципиальная схема такого регулятора с сетевым фильтром показана на рис.6. Недостатком таких схем является асимметрия положительных и отрицательных импульсов тока в нагрузке при разбросе параметров тиристоров.

Рис.6

Асимметрия проявляется в начальной стадии открывания тиристоров. Для нагревательных приборов и электроинструмента с коллекторными двигателями эта асимметрия практической роли не играет, а осветительные приборы при уменьшении их яркости начинают мигать, так как импульсы какой-то полярности при этом вообще исчезают. Для устранения этого недостатка необходимо подбирать тиристоры с идентичными параметрами по току открывания и току удержания тиристоров от технологического источника постоянного тока на соответствующей нагрузке или путем подбора второго тиристора по отсутствию мигания лампы при минимальном накале спирали.

Одной из разновидностей тиристоров являются оптотиристоры, для управления которыми при встречнопараллельном включении может быть применен принцип управления схемы рис.5 с разделением положительных и отрицательных управляющих импульсов с помощью диодов или динисторов.

Практическая принципиальная схема такого регулятора мощности нагрузки до 5 кВт показана на рис.7. Этот регулятор используется автором для регулировки сварочного тока и режимов работы других мощных электроустройств. Регулятор мощности снабжен стрелочным индикатором напряжения на нагрузке, что повышает удобство при его эксплуатации. На рис.8 виден стрелочный индикатор (поз.1), на котором приклеены детали его выпрямителя и фильтра. Регулятор не имеет сетевого фильтра, так как применяется либо на даче, либо в гараже. При необходимости в нем можно применить фильтр, схема которого показана на рис.3.

Рис.7, схема регулятора мощности на оптотиристорах

Рис.8

Регуляторы на симисторах

Особый интерес представляют современные схемы регуляторов мощности на симисторах. Традиционные схемы управления симисторами содержат относительно много деталей, что наглядно видно на монтажной плате промышленного регулятора, показанной на рис.4. Например, микросхема КР1167КП1Б выдает на управляющий электрод симистора управляющие импульсы, показанные на осциллограмме (рис.9). Принципиальная схема регулятора мощности с применением данной микросхемы, распространенная среди запорожских электриков, показана на рис. 10. Этот регулятор мощности без теплоотвода для VS1 может работать на нагрузку до 200 Вт

Рис.9

(рис. 11 ), а с радиатором площадью не менее 100 см 2 - до 2 кВт. Оказалось, что эту схему без потери качества можно еще упростить. Упрощенная схема регулятора с этой микросхемой показана на рис. 12. При использовании исправных деталей эти схемы не требуют наладки.

Рис.10, схема регулятора мощности на симисторах

При изготовлении регуляторов для прикроватных светильников оказалось, что некоторые симисторы и микросхемы имеют дефекты, влияющие на симметричность импульсов и, соответственно, на равномерность регулировки свечения ламп, и даже приводящие к их

Рис.11

миганию. Перепайка деталей на печатной плате является неприятной процедурой и приводит к ее порче. В связи с этим была изготовлена проверочная плата по схеме рис. 10 (без R1 и С1) с панелькой для однорядной микросхемы, которая решила указанные проблемы. К контактам 1 -2 печатной платы подпаивают регу-

Рис. 12

лировочный резистор R5. В качестве нагрузки подключают лампу накаливания. Перед установкой деталей для проверки плату в обязательном порядке отключают от электросети.

На базе схемы рис.11 изготовлен портативный технологический регулятор для различных работ. Монтаж деталей показан на фото в начале статьи (нижняя крышка снята). Схема собрана в алюминиевом корпусе, который также служит охладителем симистора, изолированным от корпуса слюдяной прокладкой и изоляционной спецшайбой. После крепления симистора необходимо в обязательном порядке проверить сопротивление изоляции между его анодом и корпусом, которое должно быть не менее 1 МОм Данный регулятор при испытании в течение двух часов нормально работал без нагрева корпуса на нагрузку мощностью 500 Вт.

В заключение следует отметить, что регуляторы мощности нагрузки, собранные по схемам рис.6 и рис. 10, испытанные длительной эксплуатацией, наиболее оптимальны в части надежности, компактности, простоты деталей, монтажа и наладки. С небольшими разбросами параметров тиристоров и асимметричностью параметров симисторов эти регуляторы могут работать на все типы нагрузок соответствующей мощности, кроме осветительных приборов. Отклонение номиналов резисторов и конденсаторов от указанных в схемах на 10...20% на работу регуляторов не влияют. Приведенные схемы управления могут работать и с более мощными тиристорами и симисторами в регуляторах мощности нагрузок до 5 кВт. Регулятор мощности по схеме рис. 12 рекомендуют применять для осветительных приборов мощностью до 100 Вт без теплоотвода. Работа этого регулятора на другие типы нагрузок не испытывалась, но предположительно он не должен быть хуже регулятора, собранного по схеме рис. 10 .

А.Н. Журенков

Литература

1. Золотарев С. Регулятор мощности // Радио. -1989. - №11.

2. Карапетьянц В. Усовершенствование регулятора мощности // Радио. - 1986. -№11.

3. Леонтьев А., Лукаш С. Регулятор напряжения с фазоимпульсным управлением // Радио -1992. - №9.

4. Бирюков С. Двухканальный симисторный регулятор // Радио. - 2000. - №2.

5 . Зорин С. Регулятор мощности // Радио. -2000 . - № 8 .

6. Журенков А. Фен с электронным регулятором мощности // Электрик. - 2009. - №1-2.

7. Журенков А. Калорифер повышенной мощности // Электрик. - 2009. - №9.

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.


Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм, R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.


Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 – 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 – 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 – 22 мкФ х 50 В; С2 – 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 – 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В – При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.


Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.


Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.


Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.


Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Загрузка...