decorininterior.ru

Как называются приспособления для измерения расстояния. Механические приборы для измерения расстояний

Рулетки . Рулетки изготавливают из инвара, стали (нержавеющей) или с полиамидным покрытием, ткани - тесьмяные и фибергласса с капроновым кордом. В настоящее время все более широкое распространение находят лазерные рулетки с дальностью измерений до 100м и более. Стальные рулетки для предохранения от коррозии и истирания изготавливают с полиамидным покрытием. Рулетки выпускают длиной 1,2,5,10, 20,30,50 и 100м. Ширина полотна 10-12мм, толщина – 0,15 – 0,30мм на полотне стальной рулетки наносят штрихи (деления) через 1мм или только на первом дециметре, тогда остальную часть полотна размечают через 1см. Цифры подписывают у каждого дециметрового деления, а у дециметровых делений добавляют букву м - метры. Стальные рулетки выпускают с полотном, намотанным на крестовину (РК) или вилку (РВ) и в закрытом корпусе или футляре. Металлические рулетки 1м и2м делают изогнутыми по ширине – желобковыми (РЖ). Длинномерные рулетки (50м и100м) применяют в комплекте с динамометрами, обычно пружинными, обеспечивающими стандартное натяжение рулетки 100н или 10кг. Тесьмяные (или тесемочные) рулетки изготавливают из плотной ткани с металлическими, обычно медными, прожилками, пропитанной специальным составом и покрытой краской. Полотно тесьмяной рулетки разделено штрихами через 1см, подписаны дециметровые штрихи и выделены метровые. Их хранят свернутыми в пластмассовом корпусе. Ими пользуются для измерений не требующих высокой точности.

Землемерные ленты . Они представляют собой стальную полосу шириной 10-20мм, толщиной 0,4-0,5мм и длиной 20,24,и 50м. Их выпускают двух типов – штриховые (ЛЗ) и шкаловые (ЛЗШ).

Штриховая лента ЛЗ имеет на концах наклепанные латунные наконечники со скошенными вырезами, закругленными в конце. Ширина вырезов 5-6мм, соответствует диаметру шпильки (шпилька – металлический стержень из проволоки длиной 40-50см с заостренным концом и кольцом-ручкой на другом конце). Против центров закруглений вырезов перпендикулярно к продольной оси ленты нанесены штрихи, расстояние между ними соответствует номинальной длине ленты в метрах, подписанной на ней. Оканчивается лента ручками для переноса и натяжения ее при измерениях.

Рис.6.1. Штриховая мерная лента

Лента разделена на дециметровые отрезки пробитыми круглыми отверстиями по оси ленты. Полуметровые деления отмечены заклепками, а метровые – металлическими пластинками с цифрами метров. Оцифровка метров выполнена с двух сторон ленты: на одной стороне метры возрастают в прямом направлении от 1 до конца, а на другой в обратном направлении от 1 в конце до начала. Сумма чисел равна номинальной длине ленты. Отсчет по штриховой ленте берется визуально, с оценкой на глаз 0,1 доли наименьшего деления – дециметра, то есть до 1см. В нерабочем положении лента хранится намотанной на специальное кольцо. В комплект ленты ЛЗ входят 6 или11 шпилек. Они служат для фиксации уложенной на земле ленты. Их вставляют в вырезы уложенной на земле и натянутой ленты и втыкают в грунт. Расстояния такой лентой измеряют последовательной укладкой ее в створе линии на земле и фиксацией начального и конечного штрихов ленты шпильками, втыкаемыми в землю через вырезы на концах ее.

Процесс измерения . Измерение длины линии выполняют два человека – мерщики. Ленту разматывают с кольца так, чтобы оцифровка возрастала по ходу измерения. Используют 6 или 11 шпилек в зависимости от длины измеряемой линии, из них одна у заднего мерщика, остальные у переднего. Задний мерщик совмещает с началом линии нулевой штрих ленты и фиксирует ее, втыкая шпильку через вырез в землю. Передний мерщик растягивает ленту и по указанию заднего мерщика укладывает ее в створе измеряемой линии, затем встряхивает ленту, натягивает ее с усилием 5кг, вставляет шпильку в вырез на конце ее и втыкает в землю. Так фиксируется первое уложение ленты. Одно уложение ленты называется пролет. После этого передний мерщик снимает ленту со шпильки, оставляя ее в земле, а задний вытаскивает шпильку и оба переносят ленту в подвешенном положении вперед вдоль створа линии. Дойдя до передней шпильки задний мерщик вставляет вырез ленты на шпильку, затем ориентирует (направляет) переднего мерщика в створ. Передний мерщик, как и в первом пролете, фиксирует ленту воткнутой шпилькой. Затем работа продолжается в том же порядке, пока передний мерщик не выставит все 5 или10 шпилек, задействованных в измерении. У заднего мерщика окажется 5 или10 шпилек, а у переднего одна воткнутая в землю на конце ленты. Убедившись в наличии комплекта шпилек, задний мерщик передает переднему все собранные шпильки и записывает в журнал измерений одну передачу шпилек. При этом одна шпилька всегда должна оставаться воткнутой в землю, иначе процесс измерения прервется и измерения придется начинать заново. Измеренный отрезок будет равен 5 или 10 пролетам, что при использовании 20м ленты составит 100м или 200м. В конце линии, как правило, получается неполный пролет – остаток . Для его измерения ленту протягивают вперед от последней шпильки в полном пролете до конечной точки линии и отсчитывают по ленте целые метры и дециметры, а сантиметры оценивают на глаз. Результат записывают в журнал. Число шпилек у заднего мерщика соответствует числу уложений ленты от начала 100м или 200м отрезка линии. Вычисляют измеренную длину линии по формуле:

D’ = l o * (n – 1)*N + l o * n’ + r , где l o - номинальная длина ленты; n – число шпилек, участвующих в измерении (6 или 11) ; N - число передач шпилек; n’ –число шпилек у заднего мерщика после последней передачи их; r – остаток. Если используется 20м лента и 6 шпилек, то D’= 20 (n – 1) +20 n’+ r .

Для контроля и повышения точности линию измеряют второй раз, в обратном направлении. При этом мерщики меняются местами, а за начало принимают конечную точку линии.За окончательное значение принимают среднее арифметическое из прямого и обратного результатов измерений. D’cp = (D’пр + D’обр) /2. Вычисляют также относительную погрешность измерения как отношение разности прямого и обратного значения к их сумме: 1/N = (Dпр’ – Dобр’)/ (Dпр’ + Dобр’). Она должна быть меньше допустимой 1:2000. Если это требование не выполнено, то измерения повторяют.

Чтобы избежать грубых ошибок (просчетов) при измерениях необходимо принимать следующие меры: 1) подсчитывать сумму шпилек в руках у заднего и переднего мерщиков; 2) следить, чтобы при измерении остатка лента не была перекручена; 3) следить, чтобы при измерении остатка отсчет производился от заднего конца ленты.

Измерения считаются выполненными правильно, если вычисленная относительная погрешность не превышает допуск: 1/3000 при измерениях по твердому покрытию; 1/2000 при на ровной поверхности грунт; 1/1000 при неблагоприятных условиях измерений – болотистая, кочковатая, заросшая местность, либо измерения по снегу, пашне и т.п. Иногда допускается погрешность 1/800. В большинстве случаев допускают расхождение двух измерений из расчета 2см на каждое уложение 20м ленты. Ленты ЛЗ позволяют измерять длины линий с относительной ошибкой 1:2000 – 1:3000.

Шкаловая мерная лента ЛЗШ предназначена для измерения линий с более высокой точностью, чем штриховая. Она не разделена на метры и дециметры, а имеет только на концах 10-сантиметровые шкалы с миллиметровыми делениями. Номинальной длиной ленты является расстояние между нулевыми штрихами шкал. Измерение расстояний такой лентой производится путем отсчетов по задней З и передней П шкалам одновременно двумя мерщиками по команде: «отсчет». Остатки, превышающие 10см, измеряют стальной или инварной рулеткой. Для измерения ленту подвешивают на специальных блочных штативах с деревянными головками в створе измеряемой линии. Ленту натягивают через блоки динамометром или гирями. Перед взятием отсчетов в головки штативов втыкают тонкие иглы и измеряют температуру воздуха термометром-пращом для последующего введения поправки за температуру, принимая температуру ленты равной температуре окружающего воздуха. Длину измеренной линии D’ вычисляют по формуле: D’ = l * n + S(П – З) + r, где l – уравнение ленты; n – число уложений ленты; П и З - отсчеты по передней и задней шкалам; r – остаток. Шкаловая мерная лента обеспечивает точность измерения линий 1:5000.

Рис.6.2. Шкаловая мерная лента

Рулетками линии измеряют аналогично измерению штриховой лентой, но концы уложенной рулетки фиксируют более точно, иглами или остро заточенным карандашом.

Измеренную длину линии приводят к горизонту. Для этого в среднее значение измеренной линии вводят поправки за компарирование, за температуру и за наклон линии. Фактическая длина мерного прибора (ленты или рулетки) всегда отличается от номинальной, указанной на нем. Это обусловлено погрешностью нанесения штрихов, ограничивающих их длину; измерения производятся при температуре и натяжении мерного прибора отличающихся от тех, которые были при градуировке. Кроме того, от постоянного натяжения при измерениях мерные ленты, рулетки и проволоки с течением времени удлиняются. Поэтому при измерениях с относительной погрешностью 1: 1500 и выше необходимо учитывать разность между номинальной и фактической длиной мерного прибора, которую определяют компарированием. Компарированием называется сравнение рабочего мерного прибора с другим прибором – эталоном, длина которого известна с более высокой точностью. Наиболее просто компарирование производится, если рабочая и эталонная меры одинаковой номинальной длины. В этом случае оба мерных прибора укладывают на плоской поверхности (на полу) параллельно так, чтобы начальные штрихи располагались на одной линии. Натягивают приборы с одинаковой силой и металлической линейкой с миллиметровыми делениями измеряют расстояние между конечными штрихами, которое и будет поправкой за компарирование рабочего прибора. Поправка за компарирование мерного прибора равна разности длин рабочей и эталонной меры: Dlк =lр – lэ. Этот способ приближенный. Более точно фактическую длину мерного прибора определяют на специальных устройствах – компараторах , стационарных или полевых. Полевой компаратор представляет собой закрепленный на ровной местности базис длиной 120м разделенный через 20м и измеренный с высокой точностью. Компарирование производится путем измерения длины компаратора рабочим мерным прибором и сравнением результата D’с длиной компаратора D. Разность между ними, деленная на число уложений n мерного прибора, дает поправку за компарирование Dlк =(D’-D) / n = D’/n – D/n = lр – lэ при нормальной температуре t o (в РФ t o = +20 о С). Обычно длину мерного прибора выражают уравнением l = l o + Dlк +Dl t , где Dl t – поправка за температуру, которая вычисляется по формуле Dl t = a* l o (t - t o) , где a- коэффициент линейного расширения материала мерного прибора (для стали a = 0,000012); t - температура прибора при компарировании, t o - нормальная температура равная +20 о С.

Изобретение относится к геодезическому приборостроению и предназначено для измерения расстояний различной длины при построении геодезических сетей для возведения уникальных сооружений, например ускорителей заряженных частиц, реакторных отделений, а также монтажа оборудования атомной энергетики, ракетостроения и др. Устройство содержит мерную ленту 1 с отверстиями 2, корпус 3 с основанием 4, рамку 5 с опорной призмой 6, базовую опору 7 с целиком 8, пазом 9 для крепления основания корпуса, штифтом 10, фиксатором 11 с закрепительным винтом 12; базирующий элемент 13 с кареткой 14, балансиром 15 с грузом 16 и целиком 17, уровнем 18, натяжным микрометрическим винтом 19 и индикатором 20. Применение в качестве гибкой рабочей меры ленты 1 с отверстиями 2 позволяет одной лентой измерять линии любой длины, так как лента с отверстиями представляет собой набор большого количества концевых мер. Предложенное устройство повышает точность и производительность измерения расстояний, обеспечивает применение лент из разных материалов, требующих различного натяжения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к геодезическому приборостроению и предназначено для высокоточного измерения расстояний различной длины при построении геодезических сетей для возведения уникальных сооружений, например ускорителей заряженных частиц, реакторных отделений, а так же монтажа оборудования атомной энергетики, ракетостроения, дальней радиосвязи и др. Известна рулетка содержащая корпус и установленную в нем с возможностью перемещения ленту с закрепленными на ней экраном с непрозрачными штрихами, второй экран, жестко закрепленный на корпусе, источник света, фотоприемный и вычислительный блоки, установленные по одну или разные стороны от экранов. Конструктивно рулетка изготовлена таким образом, что измерения выполняются между двумя крюками, один из которых расположен на конце рулетки, другой на корпусе. Это облегчает измерение линейных размеров, например, конструкций, но затрудняет высокоточные измерения между геодезическими стандартными знаками и снижает точность эталонирования полотна рулетки на компараторе, что исключает ее применение для высокоточных измерений в геодезических сетях. Известно устройство для измерения расстояний содержащее гибкую рабочую меру и связанные с ней через соединительное устройство отсчетное и натяжное приспособления. В известном устройстве для измерения расстояний автоматизированы контроль натяжения и отсчитывания по гибкой рабочей мере, что обеспечивает высокую точность и производительность измерения длины линии, соответствующей размеру данной гибкой рабочей меры. Поскольку при длине гибкой рабочей меры а возможны измерения линий в диапазоне d d, где d величина перемещения каретки, то в комплекте устройства должен быть набор рабочих гибких мер, обеспечивающий измерение различных расстояний. Это затрудняет использование устройства для измерения линий произвольной длины, кроме того, замена одной гибкой меры другой увеличивает трудоемкость работ и снижает производительность труда. Наиболее близким по технической сущности к изобретению является устройство для измерения расстояний содержащее базовую опору, базирующий элемент, каретку, установленную на базирующем элементе с возможностью перемещения в направлении, перпендикулярном его оси, балансир с грузом, установленный на каретке с возможностью поворота в плоскости, проходящей через оси базовой опоры и базирующего элемента, мерную проволоку, закрепленную одним концом на базовой опоре, а другим на балансире, уровень для определения взаимного положения балансира и мерной проволоки и отсчетное приспособление, служащее одновременно натяжным. Известное устройство предназначено для высокоточных измерений, но имеет низкую производительность труда, так как одной проволокой можно измерить расстояние в диапазоне d d, где d длина проволоки, а d величина перемещения каретки. Для измерения линий разной длины необходимо иметь требуемое количество мерных проволок, что повышает трудоемкость измерений и их аттестацию. Кроме того, в известном устройстве перемещение каретки и отсчитывание величины перемещения осуществляется одним и тем же микрометрическим винтом, что влияет на метрологические характеристики устройства и снижает точность вследствие износа винта. Задачей изобретения является разработка устройства для измерения расстояний, обеспечивающего высокоточное измерение линий любой длины. Это достигается тем, что в устройстве для измерения расстояний, содержащем гибкую рабочую меру, закрепленную одним концом на базовой опоре, а другим на базирующем элементе с кареткой, одноплечим балансиром с грузом и уровнем для определения взаимного положения балансира и гибкой рабочей меры, отсчетное и натяжное приспособления, согласно изобретению гибкая рабочая мера выполнена в виде ленты с отверстиями по ее оси с интервалами между ними, не превышающими длины хода каретки, базовая опора в верхнем ее торце снабжена штифтом и фиксатором положения гибкой рабочей меры и отверстия, а плечо балансира выполнено с возможностью изменения его длины, при этом натяжное приспособление выполнено в виде микрометренного винта, закрепленного на торце каретки и функционально не связано с отсчетным приспособлением. Гибкая рабочая мера в виде ленты с отверстиями по ее оси с интервалами между ними, не превышающими хода каретки, представляет собой набор большого количества концевых мер. Возможность измерения лентой с отверстиями обеспечивается конструкцией базового элемента, снабженного в верхнем торце штифтом для закрепления ленты отверстием на ней, соответствующим измеряемой длине линии, и фиксатором, осуществляющим контакт края отверстия со штифтом, что повышает точность измерений. Выполнение балансира с возможностью изменения длины плеча позволяет использовать базирующий элемент для измерения лентами разной длины (10 или 24, или 48 м) путем подбора требуемого натяжения рабочей меры, что расширяет возможности применения устройства для различных видов геодезических работ. В предлагаемом устройстве для улучшения метрологических характеристик натяжения ленты осуществляется микрометренным винтом, а в качеств отсчетного приспособления применен индикатор часового типа. Функции отсчетного и натяжного приспособлений разъединены. На фиг. 1 изображено устройство для измерения расстояний, общий вид; на фиг. 2 гибкая рабочая мера, план. Устройство для измерения расстояний содержит мерную ленту 1 с отверстиями 2, корпус 3, основание 4 корпуса и рамку 5 с опорной призмой 6; базовую опору 7 с целиком 8, пазом 9 для крепления основания корпуса, штифтом 10, фиксатором 11 с закрепительным винтом 12; базирующий элемент 13 с кареткой 14, балансиром 15 с грузом 16 и целиком 17, уровнем 18, натяжным микрометренным винтом 19 и индикатором 20. Гибкая рабочая мера в виде мерной ленты 1 с отверстиями 2 расположена в корпусе 3 с основанием 4. Мерную ленту изготовляют, например, из инварной ленты шириной 8 мм, толщиной 0,2 мм. Отверстия 2 на ленте пробивают с помощью специального шаблона и пробойвика. Для крепления корпуса 3 ленты 1 в пазу 9 на целике 8 базовой опоры 7 основание 4 выполнено в форме вилки. Один конец ленты закреплен на базовой опоре 7 ближайшим отверстием 2 в штифте 10 и фиксатором 11 положения ленты и отверстия. Другой конец ленты закреплен на базирующем элементе 13 с помощью измерительной рамки 5 с опорной призмой 6 для облегчения контакта с целиком 17, установленным на балансире 15 с грузом 16. Подпружиненная каретка 14 помещена в направляющие, расположенные на базирующем элементе 13 с возможностью перемещения. Интервалы между отверстиями 2 на ленте 1 не должны превышать шага перемещения каретки 14 для обеспечения быстрого фиксирования отверстия 2, соответствующего "грубому" значению длины измеряемой линии. Если отверстия пробиты через 50 мм, то "грубое" значение длины линии равно nl o , где l o =50 мм, n число отверстий. Каретка 14 имеет, например, шарнирную связь с балансиром 15, служащим для размещения на нем груза 16 с целиком 17 для закрепления конца ленты 1. Выполнение балансира с возможностью изменения длины плеча позволяет использовать один и тот же базирующий элемент для измерений лентами разной длины (например, 10 или 24, или 48 м) и сечения, а так же изготовленных из разных материалов (сталь, инвар, композиционные материалы) путем подбора требуемого натяжения рабочей меры перемещением груза на нем. Уровень 18 обеспечивает одинаковое положение балансира 15 и ленты 1, соответствующее требуемому натяжению для данного мерного тела как в момент аттестации устройства, так и в момент измерений. Натяжное приспособление 19, осуществляющее перемещение каретки 14, а следовательно, и балансира 15 в положение, соответствующее требуемому натяжению ленты 1, выполнено в виде микрометренного винта, отсчетное для измерения величины перемещения каретки 14, например, в виде индикатора 20 часового типа. Натяжное и отсчетное приспособления расположены у противоположных концов каретки 14 для разгрузки индикатора от воздействия напряжения подпружиненной каретки 14 с целью повышения метрологических характеристик отсчетного устройства. Перед началом измерений рабочая лента 1 проходит метрологическую аттестацию. Сначала на высокоточном измерителе типа УИМ-23 измеряют расстояния между отверстиями, а затем с эталоном сравнивают длины между отверстиями через, например, 1-5 м. Далее из обработки результатов компарирования составляют аттестацию на каждое отверстие. Кроме того, при компарировании определяют отсчет a 0 по индикатору 20, соответствующий заданному натяжению, достигаемому при определенном положении балансира 15, мерной ленты 1 при положении пузырька уровня 18 в нольпункте. Например, для 24-метровой ленты натяжение должно быть 10 кг. Путем решения и анализа уравнений равновесия одноплечего балансира 15 находят массу груза 16, имеющего возможность перемещения вдоль оси балансира и определяют место его закрепления (плечо приложения силы). Далее регулируют уровень 18 так, чтобы при натяжении 10 кг, его пузырек был в нольпункте. При этой юстировке допускается использование прокладок, если не хватает диапазона исправительных винтов уровня 18. С помощью уровня 18 контролируют взаимное положение балансира 15 и ленты 1 при заданном натяжении во время компарирования и полевых измерений. После юстировки базирующего элемента 13 и компарирования устройство готово к работе. Во втулки геодезических знаков, расстояния между которыми необходимо измерить, вставляют базовую опору 7, и базирующий элемент 13 с установленной на нем подпружиненной кареткой 14 с балансиром 15, грузом 16, целиком 17 и уровнем 18. Корпус 3 ленты 1 основанием 4 помещают в паз 9, на целике 8. Протягивают ленту 1 из корпуса 3 и закрепляют ее конец с рамкой 5 и опорной призмой 6 на целике 17. Отворачивают закрепительный винт 12 фиксатора 11 и отводят последний в сторону, натягивая ленту, в ближайшее отверстие 2 вводят штифт 10. После этого ленту 1 помещают в паз на верхнем торце целика 8, возвращают фиксатор 11 в рабочее положение и прижимают им ленту 1 с помощью закрепительного винта 12. Далее балансир 15 ориентируют по направлению измеряемой линии так, чтобы ось балансира совпала с плоскостью, проходящей через оси базовой опоры 7 и базирующего элемента 13. Для измерения длины линии на индикаторе 20 проверяют правильность установки отсчета a 0 , определяемого при компарировании. В случае, если отсчет сбит, действуя натяжным микрометренным винтом 19 и меняя положения индикатора 20 в обойме, добиваются его установки в соответствии с метрологическими данными. Вращением винта 19 перемещают каретку 14 с балансиром 15 до тех пор, пока пузырек уровня 18 установится в нольпункте. Отсчет положения каретки 14, соответствующий длине ленты от зафиксированного отверстия 2 до грани опорной призмы 6, определяют по индикатору 20. Длина линии L равна L=nl 0 +(a-a 0), где n номер отверстия; l o расстояние между отверстиями на ленте; а отсчет по индикатору при измерении; а 0 отсчет по индикатору при компарировании.

Формула изобретения

1. УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАССТОЯНИЯ, содержащее базовую опору, базирующий элемент с кареткой, гибкую рабочую меру, закрепленную одним концом на базовой опоре, а другим на базирующем элементе, механизм отсчета, взаимодействующий с кареткой, механизм натяжения рабочей меры и балансир с грузом, отличающееся тем, что гибкая рабочая мера выполнена в виде ленты с отверстиями по ее оси, интервалы между отверстиями которой не превышают шага перемещения каретки, которая шарнирно соединена с балансиром, груз размещен на балансире с возможностью перемещения вдоль него и фиксации, устройство снабжено размещенным на базовой опоре штифтом, предназначенным для поочередного размещения в отверстиях ленты, и фиксатором положения ленты. 2. Устройство по п.1, отличающееся тем, что механизм натяжения выполнен в виде микрометрического винта, взаимодействующего с торцом каретки и расположенного диаметрально относительно механизма отсчета.

Измерение расстояния - одна из самых основных задач в геодезии. Есть разные расстояния, а также большое количество приборов, созданных для проведения этих работ. Итак, рассмотрим данный вопрос более детально.

Прямой метод измерения расстояний

Если требуется определить расстояние к объекту по прямой линии и местность является доступной для исследования, используется такой простейший прибор для измерения расстояния, как стальная рулетка.

Ее длина - от десяти и до двадцати метров. Еще может применяться шнур или провод, с белыми обозначениями через два и красными через десять метров. При необходимости измерять криволинейные объекты применяется старый и всем хорошо известный двухметровый деревянный циркуль (сажень) или, как еще его называют, «Ковылек». Иногда возникает необходимость произвести предварительные замеры приблизительной точности. Делают это, измеряя расстояние шагами (из расчета два шага равно росту измеряющего минус 10 или 20 см).

Измерение расстояний на местности дистанционно

В случае нахождения объекта измерения в зоне прямой видимости, но при наличии неодолимой преграды, делающей невозможным прямой доступ к объекту, (например озера, речки, болота, ущелья и пр), применяется измерение расстояния дистанционно визуальным методом, а точнее методами, так как существует их несколько разновидностей:

  1. Высокоточные измерения.
  2. Низкоточные или приблизительные измерения.

К первым относятся измерения при помощи специальных приборов, таких, как оптические дальномеры, электромагнитные или радиодальномеры, световые или лазерные дальномеры, ультразвуковые дальномеры. Ко второму виду измерений относится такой способ, как геометрический глазомерный. Тут и определение расстояния по угловой величине предметов, и построение равных прямоугольных треугольников, и метод прямой засечки многими другими геометрическими способами. Рассмотрим некоторые из способов высокоточных и приблизительных измерений.

Оптический измеритель расстояния

Такие замеры расстояний с точностью до миллиметра в обычной практике необходимы нечасто. Ведь ни туристы, ни военные разведчики не будут носить с собой габаритные и тяжелые предметы. В основном их используют при проведении профессиональных геодезических и строительных работ. Часто используют при этом такой прибор для измерения расстояния, как оптический дальномер. Он может быть как с постоянным, так и с переменным параллактическим углом и представлять собой насадку к обычному теодолиту.

Измерения производятся по вертикальным и горизонтальным измерительным рейкам, имеющим специальный установочный уровень. такого дальномера достаточно высока, и погрешность может достигать значения 1:2000. Дальность же измерения небольшая и составляет всего лишь от 20 и до 200-300 метров.

Электромагнитный и лазерный дальномеры

Электромагнитный измеритель расстояния относится к так называемым приборам импульсного типа, точность их измерения считается средней и может иметь погрешность от 1,2 и до 2 метров. Но зато эти приборы имеют большое преимущество перед своими оптическими собратьями, так как оптимально подходят для определения расстояния между движущимися объектами. Единицы измерения расстояния у них могут исчисляться как метрами, так и километрами, поэтому их часто применяют при проведении аэрофотосъемки.

Что же касается лазерного дальномера, он предназначен для измерения не очень больших расстояний, обладает высокой точностью и очень компактен. Особенно это относится к современным портативным Эти устройства измеряют расстояние до объектов на расстоянии от 20-30 метров и до 200 метров, с погрешностью не более 2-2,5 мм на всей длине.

Ультразвуковой дальномер

Это один из самых простых и удобных приборов. Он легок и прост в эксплуатации и относится к устройствам, которые могут измерять площадь и угловые координаты отдельно заданной точки на местности. Тем не менее кроме очевидных плюсов есть у него и минусы. Во-первых, из-за небольшой дальности замера единицы измерения расстояния у этого прибора могут исчисляться только в сантиметрах и метрах - от 0,3 и до 20 метров. Также точность замера может незначительно изменятся, так как скорость прохождения звука напрямую зависит от плотности среды, а она, как известно, не может быть постоянной. Тем не менее это устройство отлично подходит для быстрых небольших замеров, не требующих высокой точности.

Геометрические глазомерные способы измерения расстояний

Выше шла речь о профессиональных способах замера расстояний. А что делать, когда под рукой отсутствует специальный измеритель расстояния? Тут на помощь приходит геометрия. Например, если необходимо измерить ширину водной преграды, то можно построить на ее берегу два равносторонних прямоугольных треугольника, как это изображено на схеме.

В данном случае ширина реки AF будет равна DE-BF Углы можно выверить с помощью компаса, квадратного листочка бумаги и даже с помощью одинаковых скрещенных веточек. Здесь проблем возникнуть не должно.

Еще можно измерить расстояние до цели через преграду, использовав также геометрический метод прямой засечки, построив прямоугольный треугольник с вершиной на цели и разделив его на два разносторонних. Есть способ определения ширины преграды с помощью простой травинки или нитки, или способ с помощью выставленного большого пальца…

Стоит рассмотреть этот способ подробнее, так как он является самым простым. На противоположной стороне преграды выбирается приметный предмет (обязательно нужно знать приблизительную его высоту), один глаз закрывается и на выбранный предмет наводится поднятый большой палец вытянутой руки. Потом, не убирая палец, закрывают открытый глаз и открывают закрытый. Палец получается по отношению к выбранному предмету сдвинут в сторону. Исходя из предполагаемой высоты предмета, приблизительно представляется на сколько метров визуально переместился палец. Это расстояние умножается на десять и в результате получается приблизительная ширина преграды. В данном случае сам человек выступает как стереофотограмметрический измеритель расстояния.

Геометрических способов измерения расстояния немало. Что бы о каждом рассказать подробно, понадобится немало времени. Но все они приблизительны и годятся только для условий, когда точное измерение с помощью приборов является невозможным.

Дальномер – один из самых необходимых инструментов в арсенале строителя – без него невозможно определить размеры габаритных предметов, расстояния, параметры сооружений. Но это не единственная область применения измерительного прибора – устройства задействуют в различных сферах науки и хозяйственной деятельности. Сегодня используют различные виды электронных рулеток. Прежде чем выбрать инструмент, изучите их особенности, принципы работы, возможности и познакомьтесь с популярными моделями.

Узнав о всех преимуществах, не спешите бежать в магазин за покупкой первого, попавшегося на глаза. Первым делом нужно выяснить, для чего нужен дальномер, где его применяют и каковы его разновидности по типу действия.

Лазерная рулетка в действии

Область применения и основные преимущества

Для начала стоит свериться с толковым словарем и уточнить, что же собой представляет это устройство. Дальномер – измерительный прибор, который применяют для определения расстояния до выбранной цели, то есть, насколько далеко находится объект.

Область применения достаточно широка. Дальномер используют:

  • в геодезических работах;
  • разметке на стройплощадке;
  • военном деле;
  • мореходстве;
  • фотографии;
  • астрономии;
  • и других областях.

В строительстве чаще всего применяют простой в работе дальномер – лазерный. Этот прибор постепенно переходит из разряда сугубо профессиональных в обязательный набор инструментов строителя. Несмотря на довольно высокий ценник, преимущества этого устройства полностью его оправдывают:

  • точность показаний;
  • скорость измерения;
  • удобство работы.

Быстрые замеры на расстоянии

Классификация по типу работы

По типу работы разделяют две категории дальномеров: активного и пассивного типов. Активный оснащен излучателем и приемником звуковых или световых волн (в зависимости от модели). Устройство подает сигнал, он отражается от объекта и возвращается обратно. Учитывая время, которое было затрачено на путь сигнала туда и обратно, а также его характеристики, прибор вычисляет расстояние до цели.

К приборам измерения расстояния активного типа относят:

  • звуковые;
  • световые;
  • лазерные дальномеры.

Пассивный тип определения дальности присущ:

  • оптическому;
  • нитяному дальномеру.

Применение в ремонтных работах

Здесь все построено на геометрии. Прибор производит вычисление высоты им самим построенного равнобедренного треугольника и на основании этого значения выдает данные о расстоянии до объекта.

Виды и принцип работы инструмента

Несмотря на объединяющее понятие «дальномер», каждый отдельный тип вычисляет расстояние разными методами. Выделяют:

  • ультразвуковой;
  • фазовый лазерный;
  • импульсный лазерный;
  • оптический;
  • оптический нитяной типы.

Измеритель на основе ультразвука

Самым грубым для измерения расстояния активного типа является ультразвуковой прибор. В основе его работы лежит принцип эхо-локации, которым пользуются даже некоторые животные, например, дельфины. Устройство создает звуковой импульс и улавливает эхо – звуковые волны, которые отражаются от объекта.

Для точности измерения используется звук высокого диапазона частот – 40 кГц. Поскольку скорость звука известна, а время его движения несложно измерить, остается вычислить только расстояние, что и делает ультразвуковой дальномер.

Простая модель на основе ультразвукового датчика

Измерение при помощи лазерного импульса

Если тот же метод применить со световым импульсом, получится точный лазерный дальномер импульсного типа. Дело в том, что скорость света настолько высока (300 000 км/с), что для небольших расстояний, которые измеряются в строительстве (20, 30, 50 м), речь идет о долях наносекунд. Измерить время с такой точностью очень сложно.

Главное преимущество такого устройства – оно посылает короткие световые импульсы, а не постоянный луч. Это значит, что можно использовать лазер высокой мощности. Такой мощный импульс может без особых сложностей «слетать» туда и обратно на расстояние 100 км за доли секунд. Это свойство применяется чаще всего в военной отрасли, а сам прибор стоит гораздо дороже аналогов.

Как работает лазерный импульс

Измерение по сдвигу фазы инфракрасного луча

Принцип работы лазерного дальномера фазового типа основан на сравнении и определении сдвига фазы световой волны. Устройство генерирует световой луч инфракрасного спектра. Луч движется с известной скоростью до цели измерения, отражается и возвращается. Инструмент сравнивает фазу световой волны в начале движения и в конце. Замер производится дважды, после чего устройство выдает результат в метрах.

Одно из преимуществ такого вида измерителей расстояния – цена. Они значительно дешевле импульсных, ведь нет необходимости оборудовать лазерную рулетку сверхточным и дорогостоящим секундомером. Кроме того, при фазовом методе погрешность составляет не больше половины фазы, то есть меньше миллиметра. Это поразительный результат, однако есть у этого устройства и недостатки.

Фазовая лазерная модель

Так как светить приходится не короткими импульсами, а постоянно на протяжении всего измерения, установить мощный лазер не получится. А это значит, что на дальние расстояния устройство не применяется. Однако для строительства дальности его действия более чем достаточно.

Измерение оптическим способом

Оптический дальномер применяется по большей части в геодезии, топографических работах, навигации, фотографии. Он работает по пассивному типу, основываясь на теореме Пифагора. Принцип работы такого прибора тяжело описать на пальцах.

Военный дальномер

Он основан на построении равнобедренного (для стереоскопичечских устройств с двумя окулярами) или прямоугольного (для монокулярных) треугольника и вычислении математическим путем его высоты. Вершиной треугольника является точка, расстояние до которой нужно измерить. Наводка осуществляется вручную.

В некоторых дальномерах нужно сопоставить две части изображения для настройки, в других – устранить двоение картинки. Так или иначе, главным датчиком является человеческий глаз, поэтому погрешность неизбежна.

Схема прибора

Измерение при помощи натянутых нитей

Нитяной дальномер – еще один оптический прибор для измерения расстояния до объекта. Он тоже работает, основываясь на геометрических вычислениях. Для измерения дальности нужна специальная дальномерная рейка – длинная «линейка» с нанесенной разметкой. Расстояние между делениями 2 см. Рейка устанавливается в точке, до которой нужно измерить расстояние.

Внутри зрительной трубы натянуты тонкие нити. Дальномер и рейка выставляются строго по уровню, так, чтобы нулевая отметка обоих была на одной высоте. Далее в линзу смотрит геодезист и считает, сколько делений по 2 см помещаются между натянутыми нитями. Таким образом, строится треугольник с вершиной в фокусе линз прибора.

Длина высоты этого треугольника + фокусное расстояние будут равняться расстоянию между выбранными точками. Такой тип дальномера часто встречается в теодолитах разных моделей.

То, что видит геодезист в глазок

Как пользоваться электронной рулеткой

Чаще всего в продаже встречаются лазерные рулетки или ультразвуковые измерительные приборы с лазерной указкой. Существенной разницы в правилах эксплуатации нет. Если вам нужно получить точные данные о результатах замеров, все измерения нужно производить в строго установленном порядке, придерживаясь инструкции. Если вам предстоит работать с дальномером в помещении, то сложности это не представляет.

  1. Включите прибор.
  2. Выберите нужные настройки: режим работы (простые измерения, вычисления площади, формулы Пифагора, непрерывное измерение, минимальное/максимальное значение или другое), единицы измерения.
  3. Установите дальномер по уровню в точке отсчета.
  4. Проведите замеры, результаты получите на дисплее.

Принцип измерения

Немного сложнее работать с лазерной рулеткой в условиях стройплощадки. На солнце инфракрасный луч плохо видно. Многие используют специальные очки, которые улучшают видимость в инфракрасном спектре.

Если измерения проводятся на больших расстояниях, в солнечный день, да и сам объект выполнен из светопоглощающих материалов, не обойтись без отражающей пластины. Хорошо, когда она есть в комплекте, но это случается редко, чаще ее приходится докупать отдельно.

У пластины две стороны, и они разные по назначению. Светлая служит отражателем при дальности замеров до 30 м, красная – на больших расстояниях.

Опять же, при большой дальности не рекомендуется работать на весу. Лучше, а иногда просто обязательно, пользоваться штативом. Следует соблюдать меры предосторожности при работе с лазерными приборами. Никогда не светите лазером в глаза себе или другим людям, это может вызвать серьезную травму сетчатки глаза.

Правила выбора лазерной рулетки

Чтобы не прогадать с выбором, нужно ознакомиться с главными параметрами и узнать, какими функциями могут быть оснащены такие устройства.

Лазерная рулетка удобнее обычной

Какие параметры важно учитывать

Выбрать электронный дальномер не так просто, как может показаться. Есть ряд параметров, которые должны вас устраивать. Эти критерии являются основополагающими при выборе устройства для измерения дальности:

  • Класс. Выделяют два класса электронных рулеток: бытовые или профессиональные. Разница между ними заключается в расширенном функционале у профессиональных моделей, надежности и, разумеется, стоимости.
  • Точность. Самый главный критерий, на который стоит обратить внимание в магазине – точность. Допускается небольшая погрешность в пределах 2-3 мм на каждый метр.
  • Дальность. В зависимости от мощности лазера допустимая дальность измерения меняется. Инструменты маленькой дальности (от 20 м) пригодны для использования в помещении, для ремонтных работ и замеров небольших предметов. Для работы на стройплощадке желательно обзавестись рулеткой от 40 м.
  • Надежность. Стройплощадка – не самое безопасное место. Пыль, грязь, вода – все это в избытке присутствует на стройке. Чтобы не повредить дорогую технику, желательно не только следить и ухаживать за ней, но и выбрать такой прибор, который будет оснащен пыле- и водозащитой корпуса. В технических характеристиках этот показатель обозначается аббревиатурой IP. Значение IP не должно быть ниже 54.
  • Время автономной работы. Поскольку прибор электронный, то ему требуется питание. Нужно учитывать, от какого элемента питания работает устройство, какая его емкость и как долго рулетка сможет непрерывно действовать без замены батареек или зарядки аккумуляторов.

Принцип косвенных вычислений

Дополнительный функционал – полезные опции

Помимо основных параметров, от которых напрямую зависит качество электронного измерения расстояния, существует ряд дополнительных функций, которые делаю работу проще и комфортнее:

  • Многие дальномеры могут производить несложные вычисления: площадь прямоугольника, объем помещения, сложение и вычитание площадей и другие. Для этого нужно сделать замер в нескольких контрольных точках.
  • Хорошо, когда модель умеет запоминать несколько последних значений, это избавит от необходимости записывать.
  • Более продвинутый электронный дальномер имеет функцию вычисления по теореме Пифагора. Это очень пригодится, если вам нужно измерить, например, высоту здания, не приближаясь к нему. Замер производится по двум точкам – верхней и нижней.
  • Откидная скоба или пятка дает возможность замерять расстояние в труднодоступных местах. Скобу можно выставить в одно из двух положений: перпендикулярно или параллельно. Некоторые модели автоматически переключаются в режим скобы, когда она откинута. Другие нужно переключать вручную.
  • Иногда на глаз сложно определить, какая точка является наиболее удаленной или максимально приближенной, электронная рулетка сможет определить соответственно максимальное или минимальное значение из полученных. Пригодится для вычисления диагонали помещения или для вычислений по формулам Пифагора.
  • В условиях хорошей освещенности на улице точку, куда указывает рулетка, не всегда видно невооруженным глазом. Профессиональные электронные дальномеры оснащены специальным оптическим визиром, который позволяет рассмотреть лазер издалека. Дорогие модели имеют цифровой визир с дисплеем, на котором изображено, куда указывает рулетка.

Панель управления лазерной рулетки

Популярные бренды на рынке измерительных приборов

Выбирая электронный дальномер для работы, стоит обратить внимание и на репутацию фирмы-производителя. Уважаемые бренды, такие как Bosch, Leica, Makita дают хорошие гарантии, у них развито сервисное обслуживание в случае поломки. Однако за имя бренда часто приходится переплачивать. Как правило, переплата полностью оправдывается высоким качеством. Ниже представлен рейтинг популярных моделей.

Лазерную рулетку освоить просто

Ультразвуковая рулетка CAPITAL CP-3009

Бюджетные модели электронных дальномеров представляют собой ультразвуковые устройства с лазерной указкой для удобства замеров. Хороший пример – CAPITAL CP-3009. Она не подходит для дальних расстояний, пользоваться целесообразно только внутри помещения. Питается от 9В батареи. Цена 60$

Дальность измерения ограничивается 18 метрами, минимальная длина, которая может быть измерена, – 0,55 м. Точность составляет 0,5%, то есть на каждом метре измеритель врет на 5 мм в ту или другую сторону. Для точных работ – непростительная погрешность, но для быстрого замера площади помещения и объема работ вполне пригодный экземпляр. Девайс имеет ряд дополнительных функций: память трех последних замеров, вычисление площади и объема.

Точный и прочный DeWalt DW040P

DeWalt DW040P – полупрофессиональный лазерный дальномер, который пользуется большой популярностью среди строителей. Прибор очень точный –1 мм погрешности на метр измерений. Такая точность устроит даже самого дотошного контроллера.

Дальность работы DeWalt DW040P – 40 м, этого более чем достаточно для работы внутри помещения и вполне хватит для наружных работ. Работает от двух полуторавольтовых батареек ААА. Класс защиты, заявленный производителем – IP 54. Цена 235$

Оснащен суперпрочным корпусом с противоударным покрытием. Падения с высоты до 2 м ему не страшны. Корпус не пропускает пыль и влагу. Может вычислить площадь в двухмерном пространстве и объем помещения. Приятное дополнение – подсветка дисплея. В комплекте идет чехол.

Лидер продаж среди бытовых рулеток – Bosch PLR 50 C

Известная фирма Bosch выпускает как бытовые модели дальномеров, так и профессиональные. Bosch PLR 50 C – бытовой вариант. Он справляется с замерами на расстоянии до 50 м. Точность замеров – до 2 мм на каждый метр.

Из дополнительных функций эта модель может похвастаться сложением, вычитанием, расчётом площади, объема, косвенным вычислением по формулам Пифагора, памятью последних 10 замеров и непрерывным измерением (треккингом). Все управление осуществляется не кнопками, а посредством сенсорного экрана.

Также есть специальное приложение для смартфона, которое синхронизируется с лазерной рулеткой и делает работу еще более комфортной. Все данные переносятся на Андроид-устройство и никуда не потеряются. Цена 150 $

Швейцарская точность – Leica Disto X310

Швейцарская фирма Leica считается одним из лучших производителей измерительных и оптических приборов в мире. Конкретно эта модель – Leica Disto X310 – профессиональный лазерный дальномер, который готов потягаться с конкурентами практически во всех категориях.

Дополнительный функционал очень широкий, начиная стандартными функциями вычисления площади и объема, заканчивая очень полезным дополнением – измерением наклона. Про формулы Пифагора и косвенные вычисления не нужно даже упоминать, они здесь, разумеется, присутствуют.

Корпус с повышенной защитой от грязи и воды – IP 65. Дальность работы – 120 м. Точность – 1 мм/м. Питание от батареек ААА. Цена 260 $

Leica Disto X310

Цены на профессиональные и бытовые измерители существенно разнятся. Выбирать нужно, ориентируясь не только на громкое имя и ценовую категорию, но и внимательно изучив все технические характеристики. Если не хочется тратить деньги ради проведения небольших работ, то можно сделать дальномер своими руками, установив на смартфон специальное приложение.

Основное назначение строительных дальномеров - определение расстояния до объектов и измерение габаритов больших объектов. Чтобы выбрать подходящую модель, нужно учитывать специфику измерений.

Типы дальномеров

Лазерный дальномер (его также называют лазерной рулеткой) представляет собой компактный прибор с дисплеем и кнопочной панелью. Внутри установлен излучатель, который посылает лазерный луч. Луч направляется на объект, до которого определяют расстояние, на его поверхности появляется точка-маркер. Отраженный луч позволяет прибору считать показатели. Значение полученных измерений выводится на дисплей. С лазерным прибором лучше всего работать в пасмурную погоду или в помещении с неярким освещением - так луч будет хорошо виден. Лазерные дальномеры используются, когда важна высокая точность измерений, так как удается направить точку-маркер именно в то место, до которого требуется определить расстояние. Излучение имеет красный цвет и безопасно для глаз человека, поэтому не требует особой защиты.

Ультразвуковой дальномер похож на лазерный, но вместо видимого луча он посылает короткие ультразвуковые волны. Главным отличием от лазерной рулетки является возможность проводить работы при любом освещении - яркий свет тут не является помехой. Однако прибор не отличается высокой точностью измерений, так как ультразвуковая волна, в отличие от лазерного луча, рассеивается в пространстве, и ее трудно направить в конкретную точку. Использовать ультразвуковые дальномеры можно при определенных условиях: когда на пути к объекту нет препятствий, которые могут поймать ультразвуковую волну до ее попадания к месту измерения. Чем дальше движется волна, тем больше она расходится в стороны. Поэтому важно, чтобы объект был достаточно широким. Чаще всего такие приборы выбирают для бытового применения или частные ремонтные бригады, а главным аргументом при покупке является доступная цена.

Дальность измерения

В зависимости от условий работы выбирают дальномер с определенным диапазоном. Например, если предстоит ремонт или перепланировка помещения, достаточно дальности измерения 40 – 50 м . Для использования на улице, например, на строительной площадке или в парке, необходим прибор, луч которого достигает 100 м и более . Производитель указывает максимальное значение в идеальных условиях - при пасмурной погоде или в сумерки. На практике оно бывает ниже, особенно в солнечную погоду или во время тумана - тогда приходится работать в специальных очках, чтобы можно было рассмотреть лазер, или использовать отражательную пластину как мишень для прицела. Обычно такая необходимость возникает при дальности измерений от 50 м. Чем больше дальность измерения, тем дороже прибор.

Покупая дальномер для работы на улице, необходимо обратить внимание на класс влагозащиты - корпус должен быть герметичным и иметь класс защиты IP54 или IP65 . Следует учесть также диапазон рабочих температур: если планируется работа в холодное время года, выбирают прибор с нижним температурным пределом в -10-20°С.

Стоит также отметить, что у каждого прибора существует минимальное значение вычисляемого расстояния. Оно может составлять от 0,05 до 0,1 м. Этот параметр имеет особое значение, если планируется измерение в ограниченном пространстве, установка маячков, выполнение разметки под ниши, монтаж встраиваемой мебели и так далее.

Точность измерения

Для каждого дальномера указывается допустимый предел погрешности в точности измерения, который может составлять от 1 до 2 мм. Погрешность возрастает с увеличением расстояния либо наоборот на малых дистанциях. Также погрешность увеличивается при наведении лазера на рифленые, бетонные или зеркальные поверхности - точка рассеивается и плохо фиксируется прибором. В этом случае следует воспользоваться отражателем, вместо которого часто вешают на стену лист бумаги.

Количество точек отсчета

Точка отсчета - место, от которого прибор начинает измерять расстояние. У любого дальномера предусмотрено две точки : можно выбрать началом отсчета заднюю или переднюю кромку корпуса. Модели с тремя точками имеют откидную скобу, от которой может производиться измерение при установке в углу или труднодоступном месте, куда не поместится весь корпус. У некоторых моделей этот режим измерения активируется автоматически при откидывании скобы. У дальномеров с четырьмя точками отсчета, кроме измерений от скобы, передней и задней кромки корпуса, точкой отсчета служит резьба в месте крепления на штатив. Это профессиональные модели, которые используются инженерами, геодезистами и другими специалистами.

Элементы питания

Большинство дальномеров работают на батарейках типа ААА. Есть модели, для которых требуется только одна такая батарейка - на одном заряде можно произвести до 3000 измерений. Приборы с двумя элементами питания работают дольше (до 5000 – 6000 измерений). С литий-ионным аккумулятором , которым комплектуются некоторые модели дальномеров, удается выполнить свыше 20 000 измерений.

Функционал

Базовая функция всех дальномеров - разовое измерение. Пользователь наводит лазер, нажимает кнопку, на дисплее выводится результат. Для непрерывных измерений предусмотрен режим сканирования. У многих моделей есть режим измерения в метрах, футах и дюймах. Встроенная память сохраняет от 10 до 50 значений в зависимости от модели устройства.

Вычисление площади и объема заметно упрощает расчеты, например, при определении необходимого количества отделочных материалов (обоев, ламината и других) для конкретного помещения и требуется при выполнении замеров под встроенную мебель.

Сложение и вычитание - к полученному числу можно прибавить следующее значение либо вычесть одно из другого, например, при измерении габаритов в помещении с выступами или подсчете общей площади сразу нескольких помещений.

Теорема Пифагора пригодится для косвенного измерения высоты, когда нет возможности сделать это напрямую из-за каких-либо препятствий или архитектурных особенностей объекта, то есть нет выступов для фиксации лазерной точки. В приборе заложен алгоритм, пользователю надо измерить лишь две величины, например, два катета, чтобы получить гипотенузу, либо, измерив гипотенузу и катет, получить второй катет.

Таймер удобен при использовании дальномера на штативе, когда требуется замер на большой дистанции. Чтобы не нажимать кнопку вручную, что может привести к погрешностям, прибор закрепляется стационарно, выставляется время срабатывания, и показатели выводятся без отклонений.

Калькулятор позволит произвести сложение отрезков на стенах сложных форм, например, с уступами. Это избавит от необходимости записывать полученные значения и складывать их, заметно сэкономит время и поможет избежать ошибок.

Определение угла выполняется по трем сторонам треугольника. Функция пригодится при определении отклонений угла от 90°, а также при вычислении угла ската крыши.

Автоматическое отключение поможет сэкономить заряд батареи. Если прибор неактивен некоторое время, он выключается.

Дополнительные опции

Многие дальномеры имеют крепление для штатива , чтобы устройство можно было устойчиво закрепить для более точных измерений. Для инженерных и строительных измерений, требующих высокой точности, необходима модель с пузырьковым уровнем на корпусе. С его помощью удастся максимально ровно установить устройство на штативе. Для работ на улице при измерении больших расстояний лучше выбирать дальномер с визиром. Он имеет встроенный зум, который позволяет рассмотреть объект, находящийся на большой дистанции. Например, если объект расположен в 100 м от места измерений, невооруженным глазом не увидишь, в какое место направлена точка-маркер. С помощью этого приспособления удастся безошибочно определить, до того ли объекта проводятся измерения, не столкнулся ли луч с препятствием. Цифровой зум выводит картинку на дисплей, оптический - позволяет рассмотреть объект через встроенную оптику. Для удобства переноски многие дальномеры поставляются в комплекте с чехлом, который можно крепить на ремне - прибор будет под рукой в нужный момент.

Для профессиональных строительных моделей предусмотрена возможность переноса измерений на фотографии и чертежи. Некоторые дальномеры оснащены модулем Bluetooth для передачи данных на мобильные устройства и компьютеры. Мгновенная передача данных на ПК или мобильный телефон экономит до 80% времени по сравнению с ручным вводом. Кроме того, исключаются ошибки, которые могут возникать при невнимательной записи результатов. Для работы нужно лишь установить программу, которую предлагает производитель.

Справочная статья, основанная на экспертном мнении автора.

Загрузка...